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Abstract

This report describes the syntax and semantics of the programming language Active
Oberon as it is supported by the Fox Oberon compiler by 2019. It is based on previous
Oberon reports by Felix Friedrich, Jürg Gutknecht, Hanspeter Mössenböck, Florian Negele,
Patrick Reali, Niklaus Wirth.
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1 Syntax and Notation in this Report

We display the syntax of Active Oberon in the Extended Backus Naur Form (EBNF). We
present productions (syntactic equations) as equations with a single equal sign =. On the left
hand side of a production stands the defined nonterminal symbol, the right hand side contains
the substitution rule and is terminated by a period. Terminal symbols are embraced by single
or double quotes (for example ’:=’, "’" and ’BEGIN’). An alternative in a production is
denoted by a vertical bar |. Brackets [ and ] denote optionality of the enclosed expression,
while braces { and } denote its repetition (possibly 0 times). Additionally, parentheses (

and ) are used to enclose expressions and thereby control additional precedence.

The Syntax of the Oberon Language desribed herein is concluded in Section B in the appendix
on page 82.

2 Vocabulary and Representation

The representation of terminal symbols in terms of characters is defined using the ASCII set.
Symbols are identifiers, numbers, strings, operators and delimiters. The following lexical
rule applies: Blanks and line breaks must not occur within symbols (except in comments
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and strings). They are ignored unless they are essential to separate two consecutive symbols.
Capital and lower-case letters are considered as distinct.

2.1 Identifiers

Identifiers are sequences of characters, digits and special characters. The first character must
be a letter:

Identifier = Letter {Letter | Digit | ’_’ }.

Letter = ’A’ | ’B’ | .. |’Z’ | ’a’ | ’b’ | .. | ’z’ .

Digit = ’0’ | ’1’ | ’2’ | ’3’ | ’4’ | ’5’ | ’6’ | ’7’ | ’8’ | ’9’.

2.1.1 Examples

KernelLog
Abc013
Trace_me

Fig. 2.1: Examples of valid identifiers

2.2 Number Literals

Numbers are (unsigned) integer or float constants. The type of an integer constant is the
minimal type to which the constant value belongs. The compiler represents constants with
the highest available size such that in constant folding the value determines the type (and
not the type of the folded arguments).

An integer number can start with a prefix that specifies its (hexadecimal or binary) repre-
sentation. If a number without prefix ends with suffix H, the representation is hexadecimal
otherwise the representation is decimal.

A real number always contains a decimal point. Optionally it may also contain a decimal
scale factor. The letters E and D mean ’times ten to the power of’.

A real number is of type FLOAT32 (and as such assignment compatible to any floating point
variable) but it is represented as FLOAT64 by the compiler. This implies that constant folding
is applied with highest implemented accuracy and conversion to FLOAT64 happens retreiving
the highest possible accuracy.
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Number = Integer | Real.

Integer = Digit {["’"]Digit} | Digit {["’"]HexDigit} ’H’
| ’0x’ {["’"]HexDigit} | ’0b’ {["’"]BinaryDigit}.

Real = Digit {["’"]Digit} ’.’ {Digit} [ScaleFactor].

ScaleFactor = (’E’ | ’D’) [’+’ | ’−’] digit {digit}.

HexDigit = Digit | ’A’ | ’B’ | ’C’ | ’D’ | ’E’ | ’F’
| ’a’ | ’b’ | ’c’ | ’d’ | ’e’ | ’f’ .

2.2.1 Examples

CONST
a = 42 ;
b = 0ABH ;
c = 13H ;
d = 0xAFFE ;
e = 0b100 ;
f = 0b1000’0010’1000 ;
g = 3. ;
h = 3.82 ;
i = 3.82E+20 ;

Fig. 2.2: Examples of Number Literals in constant declarations

2.2.2 Difference to original Oberon

Hexadecimal numbers of the form 0x123abc and binary numbers of the form 0b1001
have been newly introduced.

For all numbers, the single quote sign ’ can be used as separator in numbers. Between
digits, there can be not more than one ’. A fixed distance between the separators is not
enforced. This separator is ignored by the compiler.

The use of scaling character D in floats is deprecated. In original Oberon, it was possible
to specify REAL literals and LONGREAL literals. This is considered unnecessary as constant
folding is now always done with highest available precision. If necessary, a literal can be
converted to FLOAT32 with an explicit conversion.
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2.3 Character Literals

Character constants are denoted by the ordinal number of the character in hexadecimal
notation followed by the letter X or by the ASCII symbol of the character embraced by single
quotes.

Character = Digit {HexDigit} ’X’ | "’" char "’".

2.3.1 Examples

CONST
a = ’A’ ;
b = 13X ;

Fig. 2.3: Examples of Character Literals in constant declarations

2.4 String Literals

Strings are sequences of characters enclosed in double (") or single (’) quote marks. The
opening quote must be the same as the closing quote and must not occur within the string.
Strings of length 2 can be used wherever a character constant is allowed and vice versa.

A string of length 1 can be used wherever a character constant is allowed and vice versa.

If double and single quotes need to be used within the string or when a multi-line string
shall be entered, an escaped string format is available. A string that starts and ends with
\" can contain line breaks and control characters such as \n (new line) or \t (tab). In such
a string, the double backslash \\ can be used to denote a single backslash.

String = ’"’ {Character} ’"’ | "’" {Character} "’" | ’\"’ {Character} ’\"’.

2.4.1 Examples

CONST
a = "Hello ETH" ;
b = ’This string contains "double quotes"’ ;
c = \"This is an escaped string \n with a new line character\" ;
d = \"Escaped strings
may contain new line
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characters\" ;

Fig. 2.4: Examples of string literals in constant declarations

2.4.2 Difference to original Oberon

The escaped strings have been newly introduced. They provide a convenient way to
write control characters into streams and to allow multi-line strings.

2.5 Set Literals

A set can be written in literal form as follows

Set = "{" [Element {"," Element}] "}".

Element = RangeExpression.

The elements of a set literal need to be constant expressions.

2.5.1 Examples

CONST
a = {1,2,16};
b = {0..10, 20};
c = {MIN(SET), MAX(SET)};

Fig. 2.5: Examples of set literals in constant declarations

2.6 Array Literals

Arrays can be written in literal form as follows

Array = ’[’ Expression {’,’ Expression} ’]’.

The expressions in in an array literal need to be constant expressions. In particular they can
also be array literals.

Elements of an array literal A need to be such that there is an (array base) type T such that
the type t of each expression in A is assignment compatible to T . We write t ≤ T . The type
of an array literal is a static Math Array with length of A and smallest possible array base
type T (i.e. T must be such that there is no T ′ with above compatibility and T ′ ≤ T and
not T ≤ T ′).
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2.6.1 Examples

CONST
A = [1,2,3]; (∗ ARRAY [3] OF SIGNED8 ∗)
B = [A, [2,5,7], [10,100,MAX(SIGNED32)]]; (∗ ARRAY [3,2] OF SIGNED32) ∗)
C = [1.0, 3, 8]; (∗ ARRAY [3] OF FLOAT32 ∗)
D = [REAL(2.0), 4, 10]; (∗ ARRAY [3] OF REAL ∗)

Fig. 2.6: Examples of array literals in constant declarations

2.6.2 Difference to original Oberon

Array expressoins and array literals were not present in original Oberon and have been
added.

2.7 Keywords, Operators and Delimiters

Operators and delimiters are the special characters, strings or reserved words listed below.
The reserved words cannot be used as identifiers. The following figure lists all reserved
keywords and operator symbols that are directly recognized by the scanner.

AWAIT BEGIN BY CONST CASE CELL CELLNET CODE DO DIV END ENUM ELSE ELSIF EXIT
EXTERN FALSE FOR FINALLY IF IGNORE IMAG IN IS IMPORT LOOP MODULE MOD NIL OF
OR OUT OPERATOR PORCEDURE PORT REPEAT RETURN SELF NEW RESULT THEN TRUE TO
TYPE UNTIL VAR WHILE WITH
ARRAY OBJECT POINTER RECORD ADDRESS SIZE ALIAS
( ) [ ] { } |

" ’ , . .. : ;

& ~ ^ ?

# .# = .= < .< <= .<= > .> >= .>=

+ +* - * .* ** / ./ \ ‘

Additionally there are the following reserved words used for built-in procedures and types.
These names are also not available as identifiers for symbols in modules.

ABS ADDRESS ADDRESSOF ALL ANY ASH ASSERT BOOLEAN CAP CAS CHAR CHR COMPLEX
COMPLEX32 COMPLEX64 COPY DEC DECMUL DIM ENTIER ENTIERH EXCL FIRST FLOAT32
FLOAT64 FLOOR HALT IM INC INCL INCMUL INCR INTEGER INTEGERSET LAST LEN LONG
LONGINTEGER LSH MAX MIN OBJECT ODD RANGE RE REAL RESHAPE ROL ROR ROT SET
SET8 SET16 SET32 SET64 SHL SHORT SHR SIGNED8 SIGNED16 SIGNED32 SIGNED64 SIZE
SIZEOF STEP SUM UNSIGNED8 UNSIGNED16 UNSIGNED32 UNSIGNED32 UNSIGNED64
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Remark 1 It should be mentioned that it is possible to change the EBNF presented in this
report such that (some of) the reserved words above become keywords (appear in the EBNF)
without changing the semantics of the language presented. From the viewpoint of a compiler
implementer, this means that some reserved words move from the checking phase to the
parsing phase of a multi-stage compiler.

There are some more built-in procedures and types that play a special role in the Active
Oberon programming language. They are bound to a special module called SYSTEM and do
not interfere with the use of identifiers. For completeness, however, we also list them below.

SYSTEM.BYTE SYSTEM.GET SYSTEM.PUT SYSTEM.PUT8 SYSTEM.PUT16 SYSTEM.PUT32
SYSTEM.PUT64 SYSTEM.GET8 SYSTEM.GET16 SYSTEM.GET32 SYSTEM.GET64
SYSTEM.VAL SYSTEM.MOVE SYSTEM.REF SYSTEM.NEW SYSTEM.TYPECODE SYSTEM.HALT
SYSTEM.SIZE SYSTEM.ADR SYSTEM.MSK SYSTEM.BIT SYSTEM.Time SYSTEM.Date
SYSTEM.GetStackPointer SYSTEM.SetStackPointer SYSTEM.GetFramePointer
SYSTEM.SetFramePointer SYSTEM.GetActivity SYSTEM.SetActivity

Remark 2 Built-in procedures are different from conventional procedures in that they do not
necessarily conform to a particular procedure interface (i.e. a particular formal parameter
list). There is no overloading concept in Oberon (besides that for Operators) implying that
some of the built-in procedures cannot be implemented as conventional procedures in some
separate module.

2.8 Comments

Comments can be inserted between any two symbols of a program. They are arbitrary
character sequences opened by (∗ and closed by ∗) and do not affect the meaning of a
program. Comments may be nested.

2.8.1 Examples

(∗ This is a comment ∗)
MODULE Test;
CONST a (∗ constant symbol a ∗) = 3 ∗ (∗ times ∗) 5 (∗ five ∗);
(∗ nested comments

(∗ are possible
"anything here is ignored, also strings"
∗)
∗)
END Test.

Fig. 2.7: Examples of comments
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Remark 3 There is a special notation within comments for documentation purposes.
These notations do not affect the meaning of the program either but are useful for auto-
matic generation of source code documentation.

2.9 Conditional Compilation

A program may contain arbitrary blocks of code that are conditionally compiled. Such blocks
are introcuded by a # symbol at the beginning of a line followed by either if, elseif, or
else according to the following syntax:

Block = ’#’ ’if’ Expression ’then’ Block
{ ’#’ ’elsif’ Expression ’then’ Block }
[ ’#’ ’else’ Block]

’#’ ’end’
| any symbol until next new line character

The boolean expression may consist of identifiers and logical operators. Any identifier in
such expressions is called a definition and evaluates to either TRUE or FALSE depending on
whether the definition was provided to the current invocation of the compiler. The code
within a conditional block is only part of the compiled program if the expression evaluates
to TRUE and is completely ignored otherwise. Conditional blocks may be nested but must be
concluded using #end.

3 Declaration and Scope Rules

Every identifier occurring in a program must be introduced with a declaration, unless it is
a pre-declared identifier. Declarations also specify certain permanent properties of an item
such as whether it is a constant, type, variable or procedure. The identifier is then used to
refer to the associated item. In the following we refer to a declared identifier as a symbol.

Scopes are enclosing contexts where symbols can be declared and referenced. In Active
Oberon, scopes can be nested. The scope of an item x is the smallest (w.r.t. nesting) block
(module, procedure, record or object) in which it is declared. The item is local to this scope.
Scope rules are

1. No identifier may denote more than one item within a given scope.

2. An item may be directly referenced within its scope only.

3. The order of declaration within a scope does not affect the meaning of a program.

An identifier declared in a module block may be followed by an export mark (‘*’ or ‘-’) in its
declaration to indicate that it is exported. An identifier x exported by a module M may be
used in other modules if they import M. the identifier is then denoted as M.x and is called a
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qualified identifier. Identifier marked with ‘-’ in their declaration are read-only in importing
modules.

QualifiedIdentifier = Identifier [’.’ Identifier].
IdentifierDefinition = Identifier [ ’∗’ | ’−’ ].

3.1 Difference to original Oberon

The scope rules differ from the rules of the original Oberon language, a rationale is given
here:

In the original Oberon-2 language report the scopes started at the declaration of an item
and ended at the end of the block in which they were declared. By this construction
a forwarding declaration was formally impossible which was resolved with the explicit
allowance of forward pointers. With the advent of Objects in the language, heavy use
was made of this implicit forward referencing together with special rules for accessing
(global) variables from within objects being declared before the declaration of variables
had taken place.

With a multi-stage compiler is well possible to resolve references in all directions (if and
only if there are no circular dependencies that cannot be resolved). The scope rules have
therefore be altered to this extend.

With the old definition, the following example code was valid

TYPE A = INTEGER;
PROCEDURE P;
VAR

b:A;
A: INTEGER;

BEGIN (∗ ... ∗)
END P;

while the following code was invalid:

TYPE A = INTEGER;
PROCEDURE P;
VAR

A: INTEGER;
b:A;

BEGIN (∗ ... ∗)
END P;



4 DECLARATION SEQUENCES 14

The following example was also formally invalid (but still accepted by all compilers we
know of)

TYPE A = INTEGER;
PROCEDURE P;
VAR A:A;
BEGIN (∗ ... ∗)
END P;

With the new definition all three examples are invalid (and not accepted by the compiler).

4 Declaration Sequences

A declaration sequence is a sequence of constant, type, variable, procedure or operator
declarations. In contrast to previous implementations of Oberon, an order of the different
types of declarations is not prescribed.

DeclarationSequence = {
’CONST’ [ConstDeclaration] {’;’ [ConstDeclaration]}
|’TYPE’ [TypeDeclaration] {’;’ [TypeDeclaration]}
|’VAR’ [VariableDeclaration] {’;’ [VariableDeclaration]}
| ProcedureDeclaration
| OperatorDeclaration
| ’;’
}

The different forms of declaration are described in the sequel.

4.0.1 Examples

CONST (∗ constant declarations ∗)
UARTBufLen∗ = 3000;
TYPE (∗ type declarations ∗)
UARTBuffer = ARRAY UARTBufLen OF SYSTEM.BYTE;
UartDesc∗ = RECORD (Device.DeviceDesc)
id: INTEGER;
in, out, oin, oout: SIZE;
open: BOOLEAN;
inbuffer, outbuffer: UARTBuffer
END;
Uart∗ = POINTER TO UartDesc;
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VAR (∗ variable declarations ∗)
uarts: ARRAY Platform.NUMCOMPORTS OF Uart;

(∗ procedure declarations ∗)
PROCEDURE Close( dev: Device.Device );
BEGIN
IF dev( Uart ).open = TRUE THEN
Platform.ClearBits(Platform.UART_CR, {Platform.UARTEN});
Kernel.EnableIRQ( Platform.UartInstallIrq, FALSE );
dev( Uart ).open := FALSE;
END;
END Close;

PROCEDURE Available( dev: Device.Device ): SIZE;
BEGIN
RETURN (dev( Uart ).in − dev( Uart ).out) MOD UARTBufLen
END Available;

Fig. 4.1: Example of a declaration sequence

5 Modules

A module is the compilation unit of Oberon and, at the same time, a module consitutes a
(singleton) object providing (global) data and code. In addition to classical Oberon module,
a module can also be a template module that is parameterizable.

Module = ’MODULE’ [TemplateParameters] Identifier [’IN’ Identifier] ’;’
{ImportList} DeclarationSequence [Body]

’END’ Identifier ’.’.

TemplateParameters = ’(’ TemplateParameter {’,’ TemplateParameter} ’)’.

TemplateParameter = (’CONST’ | ’TYPE’) Identifier.

ImportList = ’IMPORT’ Import { ’,’ Import } ’;’.

Import = Identifier [’:=’ Identifier] [’(’ ExpressionList ’)’ ]
[’IN’ Identifier].
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5.0.1 Examples

MODULE SPI; (∗ Raspberry Pi 2 SPI Interface −− Bitbanging ∗)
IMPORT Platform, Kernel;

CONST HalfClock = 100; (∗ microseconds −− very conservative∗)

PROCEDURE SetGPIOs;
BEGIN
Platform.ClearAndSetBits(Platform.GPFSEL0, {21..29},{21,24});
Platform.ClearAndSetBits(Platform.GPFSEL1, {0..5},{0,3});
END SetGPIOs;

PROCEDURE Write∗ (CONST a: ARRAY OF CHAR);
VAR i: SIZE;
BEGIN
Kernel.MicroWait(HalfClock);
Platform.WriteBits(Platform.GPCLR0, SELECT); (∗ signal select ∗)
Kernel.MicroWait(HalfClock);
FOR i := 0 TO LEN(a)−1 DO
WriteByte(a[i]); (∗ write data, toggling the clock ∗)
END;
Kernel.MicroWait(HalfClock);
Platform.WriteBits(Platform.GPSET0, SELECT); (∗ signal deselect ∗)
END Write;
...

BEGIN
SetGPIOs;
END SPI;

Fig. 5.1: Example of a module (excerpt)

5.1 Difference to original Oberon

5.1.1 Contexts

The source code of the current A2 system consists of over a thousand modules of which
one third belongs to the legacy Oberon sub-system. In order to distinguish their mem-
bership, some names of the modules belonging to the newer A2 system were prefixed by
“Aos” (its previous name). Unfortunately this namingconvention has several drawbacks:

• The membership of modules with unprefixed names is not recognisable atfirst sight
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and confuses new users.

• existing prefixes do not reflect and even reverse the intented priority of the modules
within the system.

• New modules have to be prefixed as most names are already taken by modules that
belong to Oberon.As the AOS system was currently renamed to A2, modules have
again to berenamed. We therefore introduced a more generic concept that avoids
all of these shortcomings.

A Context acts as a single-level namespace for modules. It allows modules with the same
name to co-exist within different contexts. Each module belongs toexactly one context.
The pseudo-module SYSTEM is available in all contexts but does not belong to any of
them. There are currently two contexts available for the user: Oberon and A2.

Language Extensions As modules should be able to import modules from different
contexts at the same time, classifications based on a compiler-switch or different source-
code filenames are not sufficient. Therefore the programmer should be able to specify
thecontext of a module within its code.

The optional identifier after keyword IN specifies the name of the context a module
belongs to.The context defaults to A2 if it is omitted.

We additionally have added a syntax-extension for the import section of a module: the
optional context specification tells the compiler in which context to look for modules to
import. This allows to use A2 modules from within Oberon and vice versa. The context
defaults to the context of the module if it is omitted by the programmer.

Runtime Extensions For the execution of commands, the runtime-environment
implicitly specifies the correct context. Only the modules within the same context shall
be consideredwhen a command is searched for and executed. This also avoids the an-
noying problem of loading the complete Oberon system when some text displayed in A2
is middle-clicked accidentally.

Naming conventions The filenames of module files and their corresponding object-
files are prefixed by the name of their context followed by a dot. As most of the files
will belongto the default A2 context, this prefix shall be omitted for a better overview.
Prefixing module files helps the programmer to be able to distinguish the membership
by looking at a filename instead of having to browse its contents. The prefix for object-
files is needed by the compiler and the runtime-system inorder to dynamically load the
correct modules.

Simplicity The introduction of the context concept required only a few and very
simple modifications of the language, compiler and the runtime-system and is fully
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backwards-compatible to the previous solution. It even offers a more generic solution the
actual problem asked for. It could therefore even be used to assemble other big software
packages like GUI applications and libraries in the longterm.

5.2 Templates

6 Constant Declarations

A constant declaration associates an identifier with a constant value. Syntactically a constant
declaration consists of an identifier definition and an expression.

ConstantDeclaration = [IdentifierDefinition ’=’ ConstantExpression].

ConstanExpression = Expression.

Semantically the constant expression must be an expression that can be evaluated by a mere
textual scan plus constant folding, without actually executing the program. Its operands are
constants or predeclared functions that can be evaluated at compile time.

6.0.1 Examples

CONST
N = 320; (∗ constant name a associated to value 320 ∗)
b∗ = 300; (∗ exportet constant name b associated to value 300 ∗)
c∗ = "A string"; (∗ constant name c associated to a string ∗)
limit = 2∗a−1;
fullset = {MIN(SET) .. MAX(SET)}

7 Type Declarations

A data type determines the set of values which variables of that type may assume and the
operators that are applicable. A type declaration associates an identifier with a type. In the
case of structured types (arrays, mathematical arras, records and objects) it also defines the
structure of this type.

TypeDeclaration = IdentifierDefinition ’=’ Type ’;’.
Type = ArrayType | MathArrayType | RecordType | PointerType | ObjectType
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| ProcedureType | EnumerationType | QualifiedIdentifier
| CellType | CellnetType | PortType.

7.0.1 Examples

TYPE
Count = UNSIGNE64;
Pair = RECORD
first, second: Count;
END;
Table = ARRAY N OF REAL
Tree = POINTER TO Node
Node = RECORD
key : INTEGER;
left, right: Tree
END
CenterTree = POINTER TO CenterNode
CenterNode = RECORD (Node)
width: INTEGER;
subnode: Tree
END
Function = PROCEDURE(x: INTEGER): INTEGER

Fig. 7.1: Examples of Type Declarations

7.1 Categories of Types

The Active Oberon Language features the following classes of types:

(i) Fundamental Types

(ii) Array Types and Math Array Types

(iii) Record Types

(iv) Pointer Types

(v) Object Types

(vi) Procedure Types

(vii) Enumeration Types

(viii) Port Types, Cell Types and Cellnet Types
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7.1.1 Fundamental Types

Fundamental types are predefined by the Oberon language and can be addressed by the
corresponding predefined identifiers.

Some of the types, shown in Table 1, are represented with a fixed size that does not depend
on the target hardware. With the exception of CHAR and BOOLEAN, the fixed bit width is
expressed as a bit-width suffix at the type (e.g. SET16 provides 16 bits).

Moreover, there are platform-dependent types, shown in Table 2 that grow or shrink with
the target hardware. The platform-dependent types are provided by ways of implicit type
declarations declaring each names as an alias to some fixed sized type.

There is another type with fixed width, declared in (pseudo-)module SYSTEM, the a Byte
type SYSTEM.BYTE. Moreover, strictly speaking there isalso a String type that is implicitly
associated with string literals and not available as explicit type in declarations.

Type name Size Valid values

BOOLEAN 1 byte TRUE or FALSE

CHAR 1 byte characters of the extended ASCII set (0X
. . . 0FFX)

SIGNED8 1 byte integers between −27 and 27 − 1
SIGNED16 2 bytes integers between −215 and 215 − 1
SIGNED32 4 bytes integers between −231 and 231 − 1
SIGNED64 8 bytes integers between −263 and 263 − 1

UNSIGNED8 1 byte integers between 0 and 28 − 1
UNSIGNED16 2 bytes integers between 0 and 216 − 1
UNSIGNED32 4 bytes integers between 0 and 232 − 1
UNSIGNED64 8 bytes integers between 0 and 264 − 1

FLOAT32 4 bytes floating point value between −3.402838 and
+3.402838

FLOAT64 8 bytes floating point value between −1.7976308 and
+1.7976308

SET8 1 byte any set combination of the integer values be-
tween 0 and 7

SET16 2 bytes any set combination of the integer values be-
tween 0 and 15

SET32 4 bytes any set combination of the integer values be-
tween 0 and 31

SET64 8 bytes any set combination of the integer values be-
tween 0 and 63

Table 1: Fixed Size Fundamental Types
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Type name Size Valid values

REAL default floating point type,
corresponds to double in C

INTEGER machine word signed integers in machine word size,
corresponds to int in C

ADDRESS address width unsigned integers in address range
SIZE address width signed integers in address range
SET address width set with address width

Table 2: Platform Dependent Fundamental Types

Figure 7.2 shows the (implicit) compatibility of the integer types. (Sequence of) Arrows from
A to B mean: a variable of type A can be assigned to a variable of type B.

SIGNED8 SIGNED16 SIGNED32 SIGNED64

UNSIGNED8 UNSIGNED16 UNSIGNED32 UNSIGNED64

Fig. 7.2: Integer Compatibilities

The range of the larger type includes the ranges of the smaller types. The smaller type is
said to be compatible with the larger one in the sense that it can without danger of loss
of leading digits be converted. In assignments and in expansions the conversion of internal
representations is automatic.

Unsigned integers are compatible with signed or unsigned integer of same or smaller size. This
implies that the assignment from a signed to an unsigned integer of same size is considered
ok. The other direction does not work:

Although the SIZE type is signed and ADDRESS is unsigned, SIZE and ADDRESS types are
assignment compatible in both directions.

Moreover, integer types are compatible to floating point types, i.e. any integer type can be
assigned to FLOAT32 or FLOAT64 and FLOAT32 is compatible to FLOAT64.

Where there is no implicit compatibility between types, they can be converted with an
explicit conversion. The type name itself can be used for a type conversion.

7.1.2 Examples
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VAR
s8: SIGNED8; s16: SIGNED16; s64: SIGNED64;
u8: UNSIGNED8; u16: UNSIGNED16; u64: UNSIGNED64;
adr: ADDRESS; size: SIZE;
BEGIN
s16 := s8; (∗ ok ∗)
u16 := s8; (∗ ok ∗)
s16 := u8; (∗ ok ∗)
u16 := s16; (∗ ok ∗)
adr := size; (∗ ok ∗)
size := adr; (∗ ok ∗)

s16 := u16; (∗ error ∗)
s16 := SIGNED16(u16); (∗ ok ∗)

7.1.3 Difference to original Oberon

The original Oberon fundamental types comprised four integer types SHORTINT, INTEGER,
LONGINT and HUGEINT.

In the early days of Oberon, it was believed by many developers that the type sizes
would grow with the hardware. Effectively, however, the types were fixed to sizes of 8,
16, 32 and 64 bit because a substantial amount of libraries had made assumptions on
the implemented type sizes and changing the sizes would have have broken them.

Unfortunately, types that express hardware-dependent properties, such as the address
width, were not included, which made it hard to port Oberon to, for example, 64-bit
architectures. Already addresses in the higher 2G of 32-bit systems made problems
because they were represented with LONGINT, a signed 32-bit integer type.

We decided to make a radical step and to abandon the old types names completely and
to introduce types with type-names that clearly document that they are either bound
to a certain bit-width or to features of the hardware.

We introduced unsigned integer types because they can come handy and because they
behave different for fundamental operations such as shifts or comparisons.

When to use SIZE The type SIZE is the signed analogon of type ADDRESS. While
type ADDRESS is primarily designed for low-level programming, type SIZE is of high
relevance in all kinds of programs.

SIZE must be used when any kind of memory size or interval is (implicitly) addressed.
This implies the use for the lenght of an array, iterating or counting array elements but
also iterating or counting elements in other dynamic data structures.
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When to use INTEGER The type INTEGER represents the word-size of the underlying
architecture. As such, no assumptions on the bit-width of this type should be made.
There are platforms with quite some difference between the address width and the opti-
mal width for integer computation. For AMD64, for example, the machine word size is
defined as 32-bit.

A programmer usually needs to pay attention to some aspects of the internal represen-
tation of a type, even if it is only a certain intuition about the types that he or she is
using.

A programmer can hope that the word size of a machine matches the typical application
domain (”is useful”) for generic integers that do not constitute addresses or address
differences. This is the case for ”int” in C and it should and probably will be for
INTEGER in this dialect of Oberon.

However, we think that the use of INTEGER is quite restricted. It is certainly useful in
education, for rapid prototyping or for any case where the programmer can expect that
the result of a computation will be reasonably small for the typical application domain
on a given machine. In all other cases, a programmer needs to use a type with size
guarantees (e.g. SIGNED64), the type SIZEor use a declared type to be flexible.

Use Type Declarations We generally believe that in the same way as it is good
practice to use meaningful variable names, the use of declared types with meaningful
type names (such as, ”Velocity” or ”Amount” or ”Bitwidth”) provides a good way to
document the intended purpose of a type.

7.2 Array Types

An array is a structure consisting of a number of elements which are all of the same type,
called the element type. The number of elements of an array is called its length. The elements
of the array are designated by indices, which are integers between 0 and the length minus 1.

Arrays can be declared in the following form:

ArrayType = ’ARRAY’ [Expression {’,’ Expression}] ’OF’ Type.

There are two kinds of arrays possible:

(a) Static Arrays being declared as ARRAY x OF type, where x must be a constant expression,

(b) Open Arrays being declared as ARRAY OF type. Open arrays are restricted to pointer
base types, element types of open array types, and formal parameter types.

The expression ARRAY x,y OF type is an abbreviatory notation for ARRAY x OF ARRAY y OF
type.

Semantic rules:

• Static arrays of open arrays are not permitted.
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• Arrays of mathematical arrays are not permitted.

• A length expression x in ARRAY x OF type must be a constant, positive integer or zero

TYPE
Vector = ARRAY 4 OF REAL;
Matrix = ARRAY 4,4 OF REAL;

VAR
buffer: ARRAY 16 OF SIZE;

PROCEDURE Print(CONST x: ARRAY OF CHAR)

7.3 Math Arrays

Special mathematical types have been added to the Oberon language recently. They can be
declared as in

MathArrayType = ’ARRAY’ ’[’ MathArraySize {’,’ MathArraySize} ’]’ ’OF’ Type.
MathArraySize = Expression | ’∗’ | ’?’.

There are three forms of mathematical arrays possible

(a) Static Mathematical Arrays being declared as ARRAY [x] OF type, where x must be a
constant,

(b) Open Mathematical Arrays being declared as ARRAY [∗] OF type,

(c) Tensors being declared as ARRAY [?] OF type,

Again, the expression ARRAY [x,y] OF type is an abbreviatory notation for ARRAY [x] OF
ARRAY [y] OF type.

Semantic rules:

• Mathematical arrays of (conventional) arrays are not permitted.

• Arrays of Tensors and Tensors of Arrays are not permitted.

• Static Mathematical Arrays of Open Mathematical Arrays or Static Mathematical Ar-
rays of Tensors are not permitted.

• A length expression x in ARRAY [x] OF type must be a constant, positive integer or zero

Math arrays are considered value types. This implies that in an assignment a := b the data
from b are copied to a. If a is an open mathematical array, then memory will automatically
allocated. Mathematical arrays can thus also be used to declare open arrays. An open
mathematical array is always initialized with lengths zero. A tensor is a mathematical array
that not only has variable lenghts but even variable dimensions are possible. It is initialized
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with dimension 0. Lengths and dimension of mathematical arrays can be determined with
the builtin functions LEN and DIM. The length and dimensions of a mathematical array can
be set with the NEW operation.

7.3.1 Examples

VAR
x: ARRAY [∗] OF REAL;
vec: ARRAY [4] OF REAL;
matrix: ARRAY [∗,∗] OF REAL;
array3: ARRAY [∗,3] OF REAL;
tensor: ARRAY [?] OF FLOAT32;
BEGIN
NEW(x,5); (∗ x has now length 5 ∗)
vec := x[0..3]; (∗ vec now has the content of x ∗)
matrix := [x,x]; (∗ matrix of size 2 x 5 ∗)
tensor := FLOAT32(matrix); (∗ tensor has dimension 2 ∗)

7.4 Record Types

A record type is a structure consisting of a fixed number of elements, called fields, with
possibly different types. The record type declaration specifies the name and type of each
field. The scope of the field identifiers extends from the point of their declaration to the
end of the record type, but they are also visible within designators referring to elements of
record variables. If a record type is exported, field identifiers that are to be visible outside
the declaring module must be marked. They are called public fields; unmarked elements are
called private fields.

RecordType = ’RECORD’ [’(’ QualifiedIdentifier ’)’]
[VariableDeclaration {’;’ VariableDeclaration}]
{ProcedureDeclaration [’;’]| OperatorDeclaration [’;’]}
’END’.

7.4.1 Examples

TYPE
Date = RECORD

day∗, month∗, year∗: INTEGER
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END

VAR
x: RECORD

name, firstname: ARRAY 32 OF CHAR;
age: INTEGER;
salary: REAL

END

Record types are extensible, i.e. a record type can be declared as an extension of another
record type. In the example

T0 = RECORD x: INTEGER END
T1 = RECORD (T0) y: REAL END

T1 is a (direct) extension of T0 and T0 is the (direct) base type of T1. An extended type T1
consists of the fields of its base type and of the fields which are declared in T1. All identifiers
declared in the extended record must be different from the identifiers declared in its base
type record(s).

Semantic rules

• The base type T0 of a record T1 must be a record if the record is defined in the form
T1 = RECORD (T0) ... END.

• If a type T1 is defined as pointer to a record in the form T1 = POINTER TO RECORD (T0) ... END,
then T0 may be a record or a pointer to a record.

A record can be marked with the FINAL modifier in which case it cannot be extended:

7.4.2 Examples

TYPE
Date = RECORD {FINAL}

day, month, year: INTEGER;
END

7.5 Pointer Types

Formally, pointers can be defined in the form

PointerType = ’POINTER’ [Flags] ’TO’ Type.

Variables of a pointer type P assume as values pointers to variables of some type T. T is
called the pointer base type of P and must be a record or array type, unless P is an unsafe
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pointer (cf. below). Pointer types inherit the extension relation of their pointer base types: if
a type T1 is an extension of T, and P1 is of type POINTER TO T1, then P1 is also an extension
of P.

There are thus actually two kinds of (safe) pointers possible in the Active Oberon language:

(a) Pointer to array being declared as POINTER TO array type

(b) Pointer to record being declared as POINTER TO record type

If p is a variable of type P = POINTER TO T, a call of the predeclared procedure NEW(p)
allocates a variable of type T in free storage. If T is a record type or an array type with
fixed length, the allocation has to be done with NEW(p); if T is an n-dimensional open array
type the allocation has to be done with NEW(p, e0, ..., en−1) where T is allocated with
lengths given by the expressions e0, ..., en-1. In either case a pointer to the allocated variable
is assigned to p. p is of type P. The referenced variable p^ (pronounced as p-referenced) is
of type T.

Any pointer variable may assume the value NIL, which points to no variable at all. All
pointer variables inherit the extension relation of the basetype ANY and are initialized to
NIL.

For systems programming, the Oberon language discussed herein contains unsafe pointers.
An unsafe pointer is assignment compatible to type ADDRESS and pointer arithmetics are
allowed.

7.5.1 Examples

CONST
GPIO = 03F200000H;
VAR
gpio∗: POINTER {UNSAFE} TO RECORD
GPFSEL: ARRAY 6 OF SET32;
reserved: ADDRESS;
GPFSET: ARRAY 2 OF SET32;
GPFCLR: ARRAY 2 OF SET32;
END;

BEGIN
gpio := GPIO;

7.6 Procedure Types

Variables of a procedure type T have a procedure (or NIL) as value. If a procedure P is
assigned to a variable of type T, the formal parameter lists of P and T must match. P must
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not be local to another procedure. If P is a type bound procedure, then T must be flagged
as delegate.

ProcedureType = ’PROCEDURE’ [Flags] [FormalParameters].

7.6.1 Examples

TYPE
Sender∗ = PROCEDURE {DELEGATE} ( CONST buf: ARRAY OF CHAR; ofs, len: SIZE);

VAR
Available∗: PROCEDURE ( dev: Device ): LONGINT;

7.7 Object Types

Objects are basically pointers to records that can be equipped with procedures. Procedures
in an object are methods: they reside in the object scope and have access to the object’s
variables. An object can be explicitly referred to in its method using the SELF identifier.

A method prefixed by an ampersand character & is an object initializer. This method is
automatically called when an instance of the object is created and processed before the
object becomes publicly available. An object may have at most one initializer. If absent, the
initializer of the base type is inherited. Initializers can be called like methods.

Objects can have a body. This body is executed after the initializer. A body of an object
can be active, in which case the body of the object is executed on a separate thread.

7.7.1 Examples

ObjectType = ’OBJECT’
| ’OBJECT’ [Flags] [’(’ QualifiedIdentifier ’)’]

DeclarationSequence
[Body]
’END’ [Identifier].

7.8 Enumeration Types

An ENUM type declares a set of scoped constant values called enumerators. The use of
enumeration types provides for type safety by ensuring that invalid values cannot be used
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for any variable or parameter of an enumeration type involving operations on variables of
that type.

The type of an enumerator is the containing enumeration which supports assignment and all
ordering relations. An enumeration can also be extended in which case variables of this type
and all of its enumerators become compatible to extending enumerations. In order to access
an enumerator, its name has to be qualified by the name of an enumeration type definition.

Each enumerator has an ordinal value which can be explicitly specified using an arbitrary
constant integer expression. If omitted, the ordinal value of an enumerator corresponds to
the value of its immediate predecessor incremented by one. The implicit ordinal value of the
first enumerator is either zero or the biggest ordinal value of all extended enumerations incre-
mented by one. The actual value of an enumerator or enumeration variable can be obtained
by using the ORD operation which yields the smallest integer type capable of representing all
ordinal values of the corresponding enumeration.

Individual identifiers of an ENUM type list can be exported by marking them with ∗.

EnumerationType = ’ENUM’ [’(’QualifiedIdentifier’)’]
IdentifierDefinition [’=’ Expression]
{’,’ IdentifierDefinition [’=’ Expression]}

’END’.

An ENUM type may be defined as an extension of an existing ENUM type declaration by
including identifier of the base type in the type definition of the extending type. All enu-
merated values of the base type become valid values of the new type. But note that the base
type is only downwards compatible with any extended types derived from it, extensions are
not upwards compatible with their base type. This restriction exists because any value of
the base type is always a legal value of any extension type derived from it, however not every
value of an extension type is also a valid value of the base type.

7.9 Examples

Suppose that a variable of enumeration type is exported from a module

MODULE Graphics;
TYPE

Monochrome∗ = ENUM
black∗, white∗ (∗ ORD(black) has the value 0∗)

END;
VAR

pixel∗ : Monochrome; (∗ pixel is exported ∗)
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After importing the variable it can be used

MODULE Application;
IMPORT Graphics;
VAR pixel: Graphics.Monochrome;
BEGIN

pixel := Monochrome.white; (∗ qualified ∗)

And the enumeration type can be extended, based on the original type

TYPE
Monochrome = Graphics.Monochrome;
ColourRGB = ENUM (Monochrome)
red, blue, green

END;
ColourCYM = ENUM (Monochrome)
cyan, yellow, magenta

END;

VAR a:Monochrome; b,d: ColourRGB, c: ColourCYM;
BEGIN

(∗ the following are valid, compatible for assignment ∗)
a:= ColourRGB.white;
b:= ColourRGB.blue;
c:= ColourRGB.yellow;
b:= a (∗valid − value of b is now white ∗);
d:= b (∗valid − value of d is now blue ∗);
(∗ the following are invalid due to type mismatch ∗)
a:= b (∗invalid∗)
b:= c (∗invalid∗)

7.9.1 Comparison to original Oberon

The original Oberon did not feature enumeration types at all and they were added to
the language.

Two main objections have previously been levelled against enumeration types: Potential
ambiguity of naming when importing an enumeration type from another module and lack
of type extensibility. To provide a simple solution to the potential ambiguity problem
all enumeration identifiers are qualified with the identifier of the type. The maximum



8 VARIABLE DECLARATIONS 31

number of identifiers in an enumeration and the value that can be assigned to them is
implementation dependent.

In a language without enumeration types, or with “quasi” enumeration types program-
mers must manually check that values are not out of range, but for large programs
this becomes practically impossible, even for small programs it is difficult. For example
the source of the Oberon System is littered with groups of CONST declarations which
provide a typeless and error prone substitute for enumeration types.

7.10 Active Cells: Cell Types, Cellnet Types and Port Types

CellType = (’CELL’ | ’CELLNET’) [Flags] [PortList] [’;’] {ImportList}
DeclarationSequence

[Body] ’END’ [Identifier].

PortList = [PortDeclaration {’;’ PortDeclaration}].

PortDeclaration = Identifier [Flags] {’,’ Identifier [Flags]}’:’ PortType.

PortType = ’PORT’ (’IN’|’OUT’) [’(’ Expression ’)’].

8 Variable Declarations

Variable declarations introduce variables by defining an identifier and a data type for them.
Variables can be initialized with a value. If they are not initialized, the initialization with a
null value is guaranteed for pointers and otherwise it depends on the implementation of the
compiler.

VariableDeclaration = VariableNameList [’:’ Type].
VariableNameList = VariableName {"," VariableName}.
VariableName = IdentifierDefinition [Flags]

[’:=’ Expression | ’EXTERN’ Expression].
Flags = ’{’ [ Flag {’,’ Flag} ] ’}’.
Flag = Identifier [’(’ Expression ’)’ | ’=’ Expression].

Variables can be marked as EXTERN in which case their identifier is just an alias for a fixed
memory location. This address may be specified by a constant expression or a string literal
referring to an entity which is defined elsewhere. Since extern variables just refer to some
other data they cannot be initialized.

The types of the listed variables can be omitted when initializers are present and the type
should be inferred from the types.
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8.0.1 Variable initialization

Variables with an initializer are initialized before they can be used. Usually, this implies that
the initialization is done at the beginning of the respective code section:

• If a variable is a field in an object, it is initialized after the allocation of the object but
before the initializer of the object is called.

• If a variable is a field in a record, it is initialized when the record is initialized.

• If a variable is declared in a procedure scope, it is initialized at the beginning of the
procedure body.

• If a variable is declared in a module scope and if the initializer is not a constant
expression, it is initialized at the beginning of the module body. If a variable is declared
in a module scope and if the initializer is a constant expression, the variable is initialized
in the object file of the module. This can be important for low-level system module
where code (e.g. procedures with flags OPENING) could be executed before the module
body.

8.0.2 Examples

VAR
a : REAL;
b := 10, c : INTEGER;
c∗ {UNTRACED} : POINTER TO ARRAY OF CHAR;
d EXTERN "BaseTypes.Pointer" : ADDRESS;
e := SomeProc(); (∗ type inferred ∗)

8.0.3 Difference to original Oberon

The EXTERN flag was not present in Original Oberon. Moreover, we have added variable
initializers and type inference from the expression type.

9 Procedure Declarations

A procedure declaration consists of a procedure heading and a procedure body. The heading
specifies the procedure identifier and the formal parameters. For type-bound procedures it
also specifies the receiver parameter. The body contains declarations and statements. The
procedure identifier is repeated at the end of the procedure declaration.

There are two kinds of procedures: proper procedures and function procedures. The latter
are activated by a function designator as a constituent of an expression and yield a result
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that is an operand of the expression. Proper procedures are activated by a procedure call.
A procedure is a function procedure if its formal parameters specify a result type. The body
of a function procedure must contain a return statement which defines its result.

All constants, variables, types, and procedures declared within a procedure body are local to
the procedure. Since procedures may be declared as local objects too, procedure declarations
may be nested. The call of a procedure within its declaration implies recursive activation.

In addition to its formal parameters and locally declared objects, the objects declared in the
environment of the procedure are also visible in the procedure (with the exception of those
objects that have the same name as an object declared locally).

ProcedureDeclaration = ’PROCEDURE’ [’^’|’&’|’~’|’−’|Flags [’−’]]
[’(’ ParameterDeclaration ’)’]
IdentifierDefinition [FormalParameters]
[’EXTERN’ Expression ’;’ | ’;’
DeclarationSequence [Body]
’END’ Identifier].

FormalParameters = ’(’ [ParameterDeclaration {’;’ ParameterDeclaration}] ’)’
[’:’ [Flags] Type].

ParameterDeclaration = [’VAR’|’CONST’] Identifier [Flags] [’=’ Expression]
{’,’ Identifier [Flags] [’=’ Expression]} ’:’ Type.

Body = ’BEGIN’ [Flags] StatementSequence [’FINALLY’ StatementSequence]
| ’CODE’ Code.

Procedures can be marked as EXTERN in which case their identifier is just an alias for a fixed
memory location. This address may be specified by a constant expression or a string literal
referring to an entity which is defined elsewhere. Since extern procedures just refer to some
other code they do not have a body.

9.0.1 Examples

In the following some examples of a procedure declaration are shown. The last (right
most) formal parameters of a procedure can be associated with a default value. The proc-
dure can then be called with less actual parameters and the remaining formal parameters
take on the default values. If a procedure declaration specifies a receiver parameter (as
in the third example below), the procedure is considered to be bound to a type (here:
type Student).
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PROCEDURE Send∗(CONST data: ARRAY OF CHAR; ofs,len: SIZE;VAR res: INTEGER );
BEGIN (∗ ... ∗)
END Send;

PROCEDURE & Init∗(scanner: Scanner.Scanner; diagnostics: Diagnostics);
BEGIN (∗ ... ∗)
END Init;

PROCEDURE Float∗(x: FLOAT64; n := 4, f := 3, d := 0: INTEGER);
BEGIN
Commands.GetContext().out.FloatFix(x,n,f,d);
END Float;

PROCEDURE (CONST s: Student) GetGrade(Subject: INTEGER): REAL;
BEGIN (∗ ... ∗)
END GetGrade;

If a procedure declaration specifies a receiver parameter, the procedure is considered to be
bound to a type (see 9.2).

9.1 Formal Parameters

Formal parameters are identifiers declared in the formal parameter list of a procedure. They
correspond to actual parameters specified in the procedure call. The correspondence between
formal and actual parameters is established when the procedure is called. There are two kinds
of parameters, value and variable parameters, indicated in the formal parameter list by the
absence or presence of the keyword VAR. Value parameters are local variables to which
the value of the corresponding actual parameter is assigned as an initial value. Variable
parameters correspond to actual parameters that are variables, and they stand for these
variables. The scope of a formal parameter extends from its declaration to the end of the
procedure block in which it is declared. A function procedure without parameters must have
an empty parameter list. It must be called by a function designator whose actual parameter
list is empty too. The result type of a procedure can be neither a record nor an array.

Let Tf be the type of a formal parameter f and Ta the type of the corresponding actual
parameter a. a needs to be compatible to f in a procedure calls. Compatibility rules are
defined in 14.8.

9.2 Type Bound Procedures

Globally declared procedures may be associated with a record type declared in the same
module. The procedures are said to be bound to the record type. The binding is expressed by



9 PROCEDURE DECLARATIONS 35

the type of the receiver in the heading of a procedure declaration. The receiver may be either
a variable or const parameter of record type T or a value parameter of type POINTER TO T
(where T is a record type). The procedure is bound to the type T and is considered local to
it.

If a procedure P is bound to a type T0, it is implicitly also bound to any type T1 which is
an extension of T0. However, a procedure P ′ (with the same name as P ) may be explicitly
bound to T1 in which case it overrides the binding of P . P ′ is considered a redefinition of P
for T1. The signature of P and P ′ must match (see 14.2). If P and T1 are exported P ′ must
be exported too.

If v is a designator and P is a type-bound procedure, then v.P denotes that procedure P
which is bound to the dynamic type of v. Note, that this may be a different procedure than
the one bound to the static type of v. v is passed to P ’s receiver according to the parameter
passing rules specified in Section 9.1.

If r is a receiver parameter declared with type T , r.P^ denotes the (redefined) procedure P
bound to the base type of T . The signature of both declarations must match (14.2).

9.2.1 Examples

PROCEDURE (t: Tree) Insert (node: Tree);
VAR p, father: Tree;

BEGIN p := t;
REPEAT father := p;

IF node.key = p.key THEN RETURN END;
IF node.key < p.key THEN

p := p.left
ELSE

p := p.right
END

UNTIL p = NIL;
IF node.key < father.key THEN

father.left := node
ELSE

father.right := node
END;
node.left := NIL; node.right := NIL

END Insert;

PROCEDURE (t: CenterTree) Insert (node: Tree); (∗redefinition∗)
BEGIN

WriteInt(node(CenterTree).width);
t.Insert^ (node) (∗ calls the Insert procedure bound to Tree ∗)
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END Insert;

PROCEDURE (t: TreeNodePointer) Copy (): TreeNodePointer; (
VAR c: TreeNodePointer;
BEGIN
NEW(c); (∗ ... ∗)
RETURN c;
END Copy;

PROCEDURE (t: CenterTreeNodePointer) Copy (): TreeNodePointer; (
VAR c: CenterTreeNodePointer;
BEGIN
NEW(c); (∗ ... ∗)
RETURN c;
END Copy;

Remark 4 Note that the type of a receiver parameter can decide about the dynamic
nature of the object that can receive a procedure call. It the receiver type is a pointer
type, then the procedure can only be called on an object on the heap. If the receiver is
a record type, then the procedure can be called on both, heap and stack, and it is not
possible that the heap pointer escapes from the type.

Constness of records: Naturally, if a variable of record type is const, only receivers with
a const parameter can receive a call. This ensures that the const property of a record can
not be undermined by a call to a type bound procedure.

9.3 Oberon-2

The explicit receiver for type bound procedures allows to distiguish between procedures
that modify the respective object and those that let it unchanged. In C++ this is solved
by adding a const modifier at member functions:

class Counter {
private:

unsigned int value = 0;
public:

void increment (unsigned by){
value += by;

}
unsigned current() const {

return value;
}
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}

With type bound procedures, the same kind of semantics can be very naturally desig-
nated with the var / const modifiers of the receiver parameter:

TYPE Counter∗ = RECORD value: UNSIGNED64 END;

PROCEDURE (VAR c: Counter) Increment (by: UNSIGNED64);
BEGIN
INC(c.value, by);
END Increment;

PROCEDURE (CONST c: Counter) Current (): UNSIGNED64;
BEGIN
RETURN c.value;
END Increment;

Moreover, the nomenclature very naturally describes what happens during a call to
the methods, namely that the receiver object is passed as implicit parameter to the
procedure.

VAR c: Counter;
c.Increment(10); // c is passed as variable parameter
...
ASSERT(c.Current()>=10); // c is passed as const parameter

Classes in C++ are generally value types and they can be allocated on heap (with new)
or stack (implicitly). Pointer to structs / classes can point into heap or stack. Pointers
are not protected in this sense.

In Oberon, (safe) pointers are, by definition, limited to the heap. It is impossible to
create a pointer to a stack object. This implies a limitation: record types cannot be
transformed to a pointer In order to allow to create complex data structures of objects
that are implemented using an object-oriented approach, in Active Oberon the concept
of an OBJECT has been introduced. Objects invariantly live on the heap. Syntactically,
methods on objects were defined in the object’s scope. Very much like it is done in Java.
We identified a strong drawback of this approach: every object needs to be allocated on
the heap, even if its lifetime is very much limited. This, in turn, creates a high pressure
on the garbage collector and makes it harder to come up with a system without garbage
collection at all. One idea (merely on the syntactical level) was to replace OBJECT by
RECORD and to allow to write the type bound procedures within the record. Such methods
would, by default, be allowed to change the object content, i.e. be implemented with an
implicit VAR receiver:

The code

TYPE
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Counter∗ = RECORD
value: UNSIGNED64

PROCEDURE Increment (by: UNSIGNED64);
BEGIN

INC(value, by);
END Increment;

PROCEDURE Current (): UNSIGNED64;
BEGIN

RETURN value;
END Increment;

END;

would be implemented, implicitly, as

TYPE Counter∗ = RECORD value: UNSIGNED64 END;

PROCEDURE (VAR SELF: Counter) Increment (by: UNSIGNED64);
BEGIN
INC(value, by);
END Increment;

PROCEDURE (VAR SELF: Counter) Current (): UNSIGNED64;
BEGIN
RETURN value;
END Increment;

Of course, it would be possible to add the CONST keyword somewhere in the definition of
the record just as it is done in C++ in order to make a distinction between modifying
and non-modifying code. However, there is another very important reason to stay with
the elegant and natural type-bound procedures declaration of Oberon-2: It is possible
to write type bound procedures that can act on a variable of record type (being located
on heap or on stack) and to write type bound procedures that can act on a variable of
pointer type (being solely located on the heap). The latter allows to explicitly distinguih
between code that can be called on a pointer (and might return the pointer) from code
that can only be called on a record.

TYPE Expression = RECORD END;
TYPE PExpression = POINTER TO Expression;

(∗ every expression can be evaluated ∗)
PROCEDURE (e: Expression) Evaluate(): Value; (∗ ... ∗)
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(∗ only pointer expressions can be registered ∗)
PROCEDURE (e: PExpression) Register (); (∗...∗)

9.4 Operator Declaration

Oberon, in the version presented here, supports operator overloading. Operators can be
declared in the following way.

OperatorDeclaration = ’OPERATOR’ [Flags] [’−’] String [’∗’|’−’] FormalParameters ’;’
DeclarationSequence
[Body]

’END’ String.

At least one of the involved parameters must be defined in the operator defining module.
Overloaded operators are searched in all directly or indirectly loaded modules. In order to
find the operator overloaded for an expression, for each operator a distance is computed.
The first operator found with minimal distance is determined. If there are operators with
the same minimal distance for an expression, the outcome is not uniquely defined.

10 Expressions

10.1 Expression

Expressions are of the following form:

Expression = RangeExpression [RelationOp RangeExpression].
RelationOp = ’=’ | ’#’ | ’<’ | ’<=’ | ’>’ | ’>=’ | ’IN’ | ’IS’

| ’.=’ | ’.#’ | ’.<’ | ’.<=’ | ’.>’ ’.>=’
| ’??’ | ’!!’ | ’<<?’ | ’>>?’.

The operators in the second and third line of RelationOp are defined specifically for the
Math Arrays and Active Cells subset of the language, respectively.

10.2 Range Expressions

Range Expressions are defined as follows

RangeExpression = SimpleExpression
| [SimpleExpression] ’..’ [SimpleExpression][’by’ SimpleExpression]
| ’∗’ .
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10.2.1 Difference to original Oberon

The notion of Range Expressions has been introduced and thus the ranges used in the Set
types has been elevanted to Expressions in order to be able to represent slices in Math
Oberon.

10.3 Simple Expressions

SimpleExpression = Term {AddOp Term}.
AddOp = ’+’ | ’−’ | ’or’.

10.3.1 Difference to original Oberon

The unary operator ”-” and ”+” were originally contained here in the simple expression.
We have moved them to the Factor as we believe it should have higher precedence,
similar to the logical not operator.

We found an example of an assertion (in code that was productive): the assertion

assert(−1 MOD 3 = −1); (∗ did not fail, but fails now ∗)

was used in order to determine that a MOD 3 would be negative for a < 0, something
that is indeed untrue for Oberon. In fact, (−1) MOD 3 = 2! The assertion held true
because −1 MOD 3 used to be −(1 MOD 3).

10.4 Terms

Term = Factor {MulOp Factor}.
MulOp = ’∗’ | ’/’ | ’DIV’ | ’MOD’ | ’&’

| ’.∗’ | ’./’ | ’\’ | ’∗∗’ | ’+∗’ .

The operators defined in the second line of MulOp are defined specifically for Math Arrays.

10.5 Factors

Factors are defined as

Factor = UnaryExpression | UnaryOperation Factor.
UnaryOperation = ’~’ | ’+’ | ’−’.
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10.5.1 Difference to original Oberon

The original Oberon specification contained keywords, literals and designators as parts
of the Factor. We moved this to a separate productions: unary and primary expressions,
to avoid ambiguities in the syntax.

10.6 Unary and Primary Expressions

Primary Expressions constitute expressions that are not combined via free standing binary
or prefix-operators but rather formed by a designator, literal, keyword or special structural
expression that may be suffixed by further operations such as a procedure call, an index
operator, an up-call or dereference operator or selector.

Primary expressions can provide an expression with address (that can stand of the left hand
side of an assignment, for instance) or an expression that only has a value.

UnaryExpression = PrimaryExpression [DesignatorOperations] [Flags].

PrimaryExpression = Number | Character | String | Set | Array
| ’NIL’ | ’IMAG’ | ’TRUE’ | ’FALSE’ |
| ’SELF’ | ’RESULT’ | ’ADDRESS’ | ’SIZE’
| ’SIZE’ ’OF’ Factor | ’ADDRESS’ ’OF’ Factor
| ’ALIAS’ OF Factor
| ’NEW’ UnaryExpression
| ’(’ Expression ’)’
| Identifier.

DesignatorOperations = { "(" [ExpressionList] ")"
| "." Identifier
| ’[’ IndexList ’]’
| ’^’
| ’‘’

} .

ExpressionList = Expression { ’,’ Expression }.

IndexList = ’?’ [’,’ ExpressionList]
| ExpressionList [’,’ ’?’ [’,’ ExpressionList] ]

The suffix operator ”‘” is defined specifically for Math Arrays.
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10.6.1 Examples

a[10]
P(3,5).GetArray[5].CallMe()
myVariable(Type)

Fig. 10.1: Example of Designators

The RESULT designator can be used to access the (implicit) return parameter of a pro-
cedure return parameter. This feature was implemented in order to reduce memory
pressure in avoiding reallocations of already allocated return parameters. The state-
ment RETURN RESULT; only returns from a procedure without writing the result. The
latter can also be used when the return value of a procedure has already been written
in inline assembly code.

PROCEDURE ReturnLargeArray(): ARRAY[∗] OF REAL;
BEGIN
IF LEN(RESULT) < LargeSize THEN
NEW(RESULT, LargeSize)
END;
...
RETURN RESULT;
END ReturnLargeArray;

10.6.2 Difference to original Oberon

The notion of a Designator, as it was present in previous descriptions of the language,
has been replaced by a primary expression. Due to the more liberal handling of chained
expressions like the example shown below, the distinction between expressions that can
be used on the left hand side of an assignment operator and expressions that constitute
only a value, cannot be made so clear any more.

expression(BinaryExpression).left.CompatibleTo(x)

Also, in order to avoid ambiguities in the EBNF, and to allow other features such as
type guards on value types (such as literal numbers), we chose to unify such expressions
and call them primary expressions.

A type guard on numbers has been introduced. A guarded number is converted to the
given type if and only if its value is not changed. When it fails (i.e. when the actual
value of a number is not compatible to / cannot be represented by the type), a trap is
raised.
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Complex numbers have beend added to the language. Therefore the literal ’IMAG’ has
been introduced.

Because SIZE and ADDRESS are types, the meaning of SIZE(x) and ADDRESS(y) (for-
mally SYSTEM.SIZE(x) and SYSTEM.ADDRESS(x) has changed. Therefore, the forms
ADDRESS OF and SIZE OF have been introduced.

Similarly ALIAS OF has been introduced for Math Arrays.

Various operators, including the suffix transpose operator ”‘” have been introduced for
Math Arrays.

In contrast to the original NEW statement, the designator form NEW Type(parameters)
has been introduced in order to be able to allocate a type and assign it to a base type
at the same type.

VAR
x: Expression;
BEGIN
x := NEW BinaryExpression(left, right);

Moreover, it is now possible to initialize a pointer to record with a call to a procedure
returning a record in the form NEW Procedure(parameters). Also Pointers from record
types can be allocated in the form NEW RecordType;

TYPE
Student = RECORD

name: ARRAY 32 OF CHAR;
age: INTEGER

END;

PROCEDURE StudentInstance(CONST name: ARRAY OF CHAR;
age: INTEGER): Student;

BEGIN
COPY(name, RESULT.name);
RESULT.age := age;
RETURN RESULT;

END StudentInstance;

(∗ POINTER TO Student ∗)
VAR student1 := NEW Student;
VAR student2 := NEW StudentInstance("Niklas",6);
(∗ Student ∗)
VAR student3 := StudentInstance("Hannes",9);

Most of the restrictions to designators were removed. For example, designators can be
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arbitrarily chained and references returned from procedure calls can be passed to const
parameters.

P(3)[10].p(Q());

Fig. 10.2: Example of a syntactially valid designator

10.7 Operator Table

For a given operator, the types of its operands are expression compatible if they conform to
the following table (which shows also the result type of the expression). In the following, we
assume that T1 is an extension of T0.

operator first operand second operand result type
+, −, ∗ numeric numeric smallest numeric

type including both
operands

/ numeric numeric smallest FLOAT-type in-
cluding both operands

+, −, ∗, / SETn SETm Smallest SET-type in-
cluding both operands

DIV, MOD integer integer smallest integer
type including both
operands

OR,&, &, ∼ BOOLEAN BOOLEAN BOOLEAN
=, #, <, <=, >,
>=

numeric numeric BOOLEAN

CHAR CHAR BOOLEAN
character array,
string

character array,
string

BOOLEAN

=, # BOOLEAN BOOLEAN BOOLEAN
SET SET BOOLEAN
NIL, pointer type
T0 or T1

NIL, pointer type
T0 or T1

BOOLEAN

procedure type T,
NIL

procedure type T,
NIL

BOOLEAN

IN integer set BOOLEAN
IS T0 type T1 BOOLEAN

11 Statements
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Statement = [
UnaryExpression

[’:=’ Expression
| ’!’ Expression | ’?’ Expression | ’<<’ Expresssion | ’>>’ Expression
]

| ’VAR’ Identifier [’:=’ Expression]
{’,’ Identifier [’:=’ Expression]} [’:’ Type]

| ’IF’ Expression ’THEN’ StatementSequence
{’ELSIF’ Expression ’THEN’ StatementSequence}
[’ELSE’ StatementSequence]
’END’

| ’WITH’ Identifier ’:’ QualifiedIdentifier ’DO’ StatementSequence
{’|’ QualifiedIdentifier ’DO’ StatementSequence}
[ELSE StatementSequence]
’END’

| ’CASE’ Expression ’OF’ [’|’] Case
{’|’ Case}
[’ELSE’ StatementSequence]
’END’

| ’WHILE’ Expression ’DO’
StatementSequence

’END’
| ’REPEAT’

StatementSequence
’UNTIL’ Expression

| ’FOR’ Identifier ’:=’ Expression ’TO’ Expression [’BY’ Expression] ’DO’
StatementSequence

’END’
| ’LOOP’ StatementSequence ’END’
| ’EXIT’
| ’RETURN’ [Expression]
| ’AWAIT’ Expression
| StatementBlock
| ’CODE’ {any} ’END’
| ’IGNORE’ Expression

].

Case = RangeExpression {’,’ RangeExpression} ’:’ StatementSequence.

StatementBlock = ’BEGIN’ [Flags] StatementSequence ’END’.

StatementSequence = Statement {’;’ Statement}.
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11.1 Statement Block and Statement Sequences

Statements may be grouped into a block delimited by BEGIN and END. The block may
include modifiers in braces {} which modify the properties of actions within the block.
See individual statement types for details of their modifiers. A sequence of more than one
statement denotes the sequence of actions specified by the component statements, they are
delimited by semicolons.

StatementBlock = ’BEGIN’ [Flags] StatementSequence ’END’.
StatementSequence = Statement {’;’ Statement}.

11.1.1 Examples

BEGIN{EXCLUSIVE} (∗ an exclusive statement block ∗)
state := States.normal;
AWAIT(state = States.alert)

END;

11.2 Assignment Statement

The assignment serves to replace the current value of a variable by a new value specified by
an expression. The assignment operator is written as := and pronounced as becomes.

UnaryExpression ’:=’ Expression

The type of the designator must be assignment compatible with the type of the expression.

11.2.1 Examples

i := 0;
x := 3.4;
y := i∗i;

Fig. 11.1: Examples of Assignments

11.3 Declaration Statement
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’VAR’ Identifier [’:=’ Expression]
{’,’ Identifier [’:=’ Expression]} [’:’ Type];

Variables can be declared within a statement sequence. A declaration statement is indicated
by the VAR keyword. Similar to variable declaration, the type of the variable can be omitted
when an initializer is present and when the type of the initializer shall be taken for the variable
type. The variable is visible within the statement sequence from the point of declaration to
the end of the procedure scope. A variable can only be declared once in a procedure scope.

11.3.1 Examples

BEGIN
VAR a := 20, b: SIZE; (∗ both, a and b are of type SIZE ∗)
VAR c := a, d := 30; (∗ c is of type of a and d is SIGNED8 ∗)
...
END

11.3.2 Difference to original Oberon

We have introdcued the declaration statement motivated by the need to support a better
way of initialization for value (record) types.

11.4 Procedure Call Statement

A procedure call serves to activate a procedure. The procedure call may contain a list of
actual parameters which are substituted in place of their corresponding formal parameters
defined in the procedure declaration. The correspondence is established by the relative
positions of the parameters in the lists of actual and formal parameters respectively.

UnaryExpression ["(" ExpressionList ")"];

There are three kinds of parameters: value, constant and variable parameters. In the case
of variable parameters, the actual parameter must be a designator representing an address.
If it designates an element of a structured variable, the selector is evaluated when the for-
mal/actual parameter substitution takes place, i.e. before the execution of the procedure.

If the parameter is a value parameter, the corresponding actual parameter must be an ex-
pression. This expression is evaluated prior to the procedure activation, and the resulting
value is assigned to the formal parameter which now constitutes a local variable on the callee
side.
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If the parameter is a constant parameter, the corresponding actual parameter can be copied
but it does not have to. The compiler can optimize. This is particularly handy for strings
and large records.

11.4.1 Examples

PROCEDURE Test(a: SIGNED32; VAR r: REAL;
CONST c: Student; CONST s: ARRAY OF CHAR);

BEGIN
IF c.semester = 2 THEN (∗ c might be passed by reference here ∗)

a := a ∗ 2; (∗ no effect to caller ∗)
r := 20; (∗ effect to caller ∗)
TRACE(s);

END;
END Test;

VAR r: REAL;
Test(22, r, student, "Rabbit");

11.4.2 Difference to original Oberon

We have introduced CONST parameters in order to support the read-only access to large
arrays in the MathArray framework. It turned out to be very useful for records and
strings also.

11.5 Communication Statement

The various communication statements are used in the Active Cells subset of the language.
They are used to send and receive data via a port in a blocking or non-blocking way.

11.6 If-Elsif-Else-End Statement

An IF statement specifies the conditional execution of statements depending on the evalu-
ation of a a Boolean expression called its guard. The guards are evaluated in sequence of
occurrence, until one evaluates to TRUE, thereafter its associated statement sequence is exe-
cuted. If no guard is satisfied, the statement sequence following the symbol ELSE is executed,
if there is one.

’IF’ Expression ’THEN’ StatementSequence
{’ELSIF’ Expression ’THEN’ StatementSequence}
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[’ELSE’ StatementSequence]
’END’

11.6.1 Examples

IF ch <= "9" THEN RETURN ORD( ch ) − ORD( "0" )
ELSIF ch <= "F" THEN RETURN ORD( ch ) − ORD( "A" ) + 10
ELSIF ch <= "f" THEN RETURN ORD( ch ) − ORD( "a" ) + 10
ELSE Error( Basic.NumberIllegalCharacter ); RETURN 0
END

11.7 Case Statement

A CASE statement specifies the selection and execution of a statement sequence according
to the value of an expression. First the case expression is evaluated, then the statement
sequence is executed whose case label list contains the obtained value. The case expression
and all labels must be of the same type, which must be an enumeration type, integer type,
any SET type or CHAR. Case labels are constants, and no value must occur more than once
in a single CASE statement. If the value of the expression does not occur as a label of any
case, the statement sequence following the symbol ELSE is selected, if there is one. If, in this
situation, there is no ELSE part, a trap is raised.

’CASE’ Expression ’OF’ [’|’] Case
{’|’ Case}
[’ELSE’ StatementSequence]
’END’

11.7.1 Examples

CASE ch OF
EOT: s := EndOfText
| ’#’: s := Unequal; GetNextCharacter
| ’&’: s := And; GetNextCharacter
| ’[’: s := LeftBracket; GetNextCharacter
| ’]’: s := RightBracket; GetNextCharacter
(∗ ... ∗)

ELSE



11 STATEMENTS 50

s := Identifier; GetIdentifier( token );
END;

11.8 With Statement

When working with a variables p of dynamic type (e.g. pointers to records or reference
parameters of record type), often it is required to guard p to a type that extends the static
type of p. The WITH statement assumes a role similar to the type guard, extending the guard
over an entire statement sequence. It may be regarded as a regional type guard.

Moreover, the WITH statement allows to check for a type and conditionally execute a state-
ment sequence depending of the dynamic type. A WITH statement can, in this sense, be
regarded like a CASE statement for types.

If the dynamic type of the guarded variable is not of dynamic type of any of the alternatives
given, the ELSE branch is taken. If no ELSE branch is present in such cases, a trap will be
raised.

’WITH’ Identifier ’:’ QualifiedIdentifier ’DO’ StatementSequence
{’|’ QualifiedIdentifier ’DO’ StatementSequence}
[ELSE StatementSequence]
’END’

If a type T1 is referred to by a qualified identifier in the WITH statement and a type T2

is referred to by a later qualified identifier later in the same WITH, T2 may not extend T1

(otherwise the branch with T2 would never be reachable).

11.8.1 Examples

WITH x:
| SyntaxTree.ResultDesignator DO result := ResolveResultDesignator(x)
| SyntaxTree.SelfDesignator DO result := ResolveSelfDesignator(x)
| SyntaxTree.BinaryExpression DO result := ResolveBinaryExpression(x)
| SyntaxTree.UnaryExpression DO result := ResolveUnaryExpression(x)
END;

Fig. 11.2: Example of a WITH statement

WITH x:
| SyntaxTree.Expression DO (∗ general case ∗)
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| SyntaxTree.UnaryExpression DO (∗ forbidden ! ∗)
END;

Fig. 11.3: Example of a rejected WITH statement when UnaryExpression inherits
from Expression

11.8.2 Difference to original Oberon

In Oberon-2 the WITH statement with alterantives was present buth then it was removed
again. We reintroduced it in a slighty modified form. We removed the necessity to repeat
the variable name for each case occuring.

It should be noted that, technically, WITH is different from CASE in the following sense.
While for CASE it is relatively straighforward to implement an optimized version with a
branch table, this is not the case for WITH, particularly not with dynamic module loading.
However, at least the indirect loading of the type tags as it would occur in a multi-case
IF statement can be avoided here by keeping the type tag address in a register. This is
a simple optimisation that can be implemented with little costs in a compiler.

11.9 While Statement

A WHILE statement specifies repetition zero or more times of some statements. If the Boolean
expression (guard) yields TRUE, then the statement sequence is executed. The expression
evaluation and the statement execution are repeated as long as the Boolean expression yields
TRUE.

’WHILE’ Expression ’DO’
StatementSequence

’END’

11.9.1 Examples

WHILE len > 0 DO
data[length] := buf[ofs];
INC(ofs); INC(length); DEC(len)

END;
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11.10 Repeat-Until Statement

A REPEAT statement specifies the repeated execution of a statement sequence until the
Boolean expression (guard) yields TRUE. The statement sequence is thus executed one or
more times.

’REPEAT’
StatementSequence

’UNTIL’ Expression

11.10.1 Examples

REPEAT
expression := Expression();
expressionList.AddExpression( expression )

UNTIL ~Optional( Scanner.Comma );

11.11 For Statement

The FOR statement provides a means of repeating a sequence of statements for a number
of times whilst automatically incrementing or decrementing a variable by a fixed constant
value. The loop continues whilst the value of the FOR variable (counter) is within the range
specified by the two expressions.

It is mainly used in arithmetic algorithms where the counter may typically be used as an
array index.

’FOR’ Identifier ’:=’ Expression ’TO’ Expression [’BY’ Expression] ’DO’
StatementSequence

’END’

The for statement is equivalent to a while statement with a additional temporary variable
for the end value. The start and end value of the for-loop are only evaluated once. The
increment of a for-loop must be constant expression.

FOR i := start TO end BY increment DO
Statements

END;
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is equivalent to

i := start;
temp := end;
IF increment > 0 THEN

WHILE i <= temp DO
Statements;
i := i + increment;

END;
ELSE

WHILE i >= temp DO
Statements;
i := i + increment;

END;
END;

11.11.1 Examples

FOR i := 0 TO EndOfText DO ASSERT(symbols[i] # "") END;

11.12 Loop and Exit Statement

A LOOP statement specifies the repeated execution of a statement sequence, the loop is
terminated by the execution of any EXIT statement within that sequence.

An EXIT statement consists of the symbol EXIT. It specifies termination of the enclosing
loop statement and continuation with the statement following the END of that loop state-
ment. Each Exit statement is contextually, although not syntactically bound to the loop
statement which contains it.

’LOOP’ StatementSequence ’END’

11.12.1 Examples

The use of WHILE and REPEAT statements is recommended for the most cases. A loop
statement can be useful to express repetition where there are several termination condi-
tions at different points in the code.
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LOOP
IF ("0" <= ch) & (ch <= "9") OR (d = 0) & ("A" <= ch) & (ch <= "F") THEN

dig[n] := ch; INC( n ) END;
ELSIF ch = "." THEN
m := n;

ELSE EXIT
END

END;

11.13 Return Statement

A RETURN statement is used to return from a procedure. If the procedure is declared to return
a value of type T , the return statement must return an expression of assignment compatible
type.

11.13.1 Examples

PROCEDURE Ten( e: SIGNED32 ): FLOAT64;
VAR x, p: FLOAT64;
BEGIN

x := 1; p := 10;
WHILE e > 0 DO

IF ODD( e ) THEN x := x ∗ p END;
e := e DIV 2;
IF e > 0 THEN p := p ∗ p END (∗ prevent overflow ∗)

END;
RETURN x

END Ten;

11.14 Await Statement

The AWAIT statement is a statement to synchronize runnning processes (threads).

’AWAIT’ Expression

11.15 Code Block

Code Blocks can be used in order to write inline assembly code in Oberon.
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’CODE’ {any} ’END’

11.15.1 Examples

OPERATOR −"−"∗(x {REGISTER}: Vector): Vector;
VAR res{REGISTER}: Vector;
BEGIN

CODE
XORPS res, res
SUBPS res, x

END;
RETURN res;

END "−";

11.16 Ignore Statement

The IGNORE statement can be used in order to ignore the result of a procedure call.

’IGNORE’ Expression

The IGNORE statement was introduced for interfacing with C libraries, where often the
result of a library call is ignored. It was not present in the original Oberon.

11.16.1 Examples

IGNORE User32.SetWindowText(root.hWnd, windowTitle);
IGNORE User32.BringWindowToTop( root.hWnd );
IGNORE User32.SetForegroundWindow( root.hWnd );

It turned out to be also convenient for supporting passing on results in chained stream-
expressions, as they are, for example, available in C++.

IGNORE Out.GetWriter() << "This is text " << "that is concatenated";
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12 Built-in Functions and Symbols

There are some built-in procedures and functions in Active Oberon. We give a short
overview in the following table. Note that Integer stands for SIGNEDx or UNSIGNEDx, SIZE or
INTEGERḞloat stands for any of FLOATx or REAL. Number stands for Integers or Float. Set
stands for any of SETx or SET. Complex stands for any of COMPLEXx or COMPLEX.

12.1 Global

12.1.1 Conversions

Function Argument Types Result Type Description

ABS(x) x: Number Number return absolute value
of x

CAP(x) x: CHAR CHAR return capital letter of
x

CHR(x) x: Integer CHAR return character with
ascii-number x

ENTIER(x) x: Float SIGNED32 return largest integer
not greater than x

ENTIERH(x) x: Float SIGNED64 return largest integer
not greater than x.
DEPRECATED

FIRST(r) r: RANGE SIZE return first element of
range

IM(x) x: Complex Float return imaginary part
of c

LAST(r) r: RANGE SIZE return last element of
range

LONG(x) x: Number Number number conversion up
DEPRECATED

ODD(x) x: Integer BOOLEAN return if least signifi-
cant bit of x is set

ORD(x) x: CHAR SIGNED16 return ascii-number of
x

RE(c) c: Complex Float return real part of c
SHORT(x) x: Number Number number conversion

down DEPRECATED
STEP(r) r: RANGE SIZE return step size of

range
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The deprecated number conversion routines SHORT and LONG operate with respect to the
relations

FLOAT64 ⊃ FLOAT and SIGNED64 ⊃ SIGNED32 ⊃ SIGNED16 ⊃ SIGNED8.

All type names of numeric types can also be used for conversion. The deprecated ENTIERH(x)
can be replaced by SIGNED64(x).

12.1.2 Arithmetics

Function Argument Types Result Type Description

DEC(x) x: Integer decrement x by 1
DEC(x,n) x: Integer,

n: Integer
decrement x by n

EXCL(s,e) s: SET, e: Integer exclude element e from
set s

INC(x) x: Integer increment x by 1
INC(x,n) x: Integer,

n: Integer
increment x by n

INCL(s,e) s: SET,
e: Integer

include element e in set
s

MAX(T) Number or Set
type T

Number return maximal num-
ber of basic type t

MIN(T) Number or Set
type T

Number return minimal num-
ber of basic type t

12.1.3 Shifts

Function Argument Types Result Type Description

ASH(x,y) x: Integer or Set,
y: Integer

Integer or Set return arithmetic shift
of x by y bits (shifts
right for n < 0)

LSH(x,n) x: Integer or Set,
y: Integer

Integer or Set Returns value x logi-
cally shifted left n bits
(shifts right for n < 0)

ROL(x,y) x: Integer or Set,
y: Integer

Integer or Set return rotate left of x
by y bits.

ROR(x,y) x: Integer or Set,
y: Integer

Integer or Set return rotate right of x
by y bits.

ROT(x,n) x: Integer or Set,
y: Integer

Integer or Set Returns value x ro-
tated left by n bits (ro-
tates right for n < 0)

SHL(x,y) x: Integer or Set,
y: Integer

Integer or Set return shift left of x by
y bits.
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Function Argument Types Result Type Description

SHR(x,y) x: Integer or Set,
y: Integer

Integer or Set return shift right of x
by y bits. Type of x de-
termines if this is logi-
cal or artihmetic shift

The result of a shift is unpredictable if a too large or too small shift amount, out of the
bit-width of the argument, is provided.

12.1.4 Arrays and Math Arrays

Function Argument Types Result Type Description

DIM(a) a: Math Array SIZE number of dimensions
INCR(a,d) a: Math array,

d: SIZE
SIZE return increment of di-

mension d
LEN(x) x: ARRAY OF SIZE return length of x
LEN(x,d) x: Math Array or

Array
SIZE return length of dimen-

sion d of x

12.1.5 Addresses, Memory and Types

Function Argument Types Result Type Description

ADDRESSOF(v) v: any designator ADDRESS returns the address of v
ADDRESS OF v v: any designator ADDRESS returns the address of v
COPY(x,y) x,y: ARRAY OF

CHAR
0X-terminated copy of
x to y

NEW(x,...) x: pointer type allocate x
NEW T(...) pointer type T T allocate an instance of

T
SIZEOF(T) any type T SIZE returns the size of type

T
SIZE OF T any type T SIZE returns the size of type

T

12.1.6 Procedure Access

The following built-in procedure allows accessing exported procedures without having to
import it.
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Function Argument Types Result Type Description

GETPROCEDURE(x,y,z)x and y array of
characters, z pro-
cedure variable

get procedure y of type
z from module x

The first two operands name the module and the procedure therein to look for. The third
operand must be a procedure variable. The result is either NIL or a public procedure of the
named module that matches the procedure name and the procedure type of the procedure
variable. For fine-grained access control, global procedures like as variables can be exported
either with an asterik or a minus sign. A procedure exported with a minus sign is still
accessible by importing modules, but not using GETPROCEDURE.

12.1.7 Examples

GETPROCEDURE is useful for interactive programs, where the user types in or middle-clicks
on commands to execute them. The following module provides an interface for executing
standard Oberon commands given as a string whereas the module gets dynamically
loaded if possible:

MODULE Commands;

IMPORT Strings;

PROCEDURE Execute− (CONST command: ARRAY OF CHAR);
VAR pos: SIZE; module, procedure: ARRAY 32 OF CHAR; result: PROCEDURE;
BEGIN

IF Strings.FindCharacter (’.’, command, pos) THEN
Strings.Copy (command, module, 0, pos); INC (pos);
Strings.Copy (command, procedure, pos, Strings.GetLength (command) − pos);
GETPROCEDURE (module, procedure, result);
IF result # NIL THEN result () END;

END;
END Execute;

END Commands.

The following module show how that interface might be used:

MODULE Test;

IMPORT Commands;

PROCEDURE Hello∗;
BEGIN
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TRACE ("Hello World!");
END Hello;

BEGIN
Commands.Execute ("Test.Hello");

END Test.

12.1.8 Traps

Function Argument Types Result Type Description

ASSERT(x) x: BOOLEAN raise trap, if x not true
HALT(n) n: Integer generate a trap with

number n

12.1.9 Atomic Operations

Atomic Operations allow to read and modify data that is shared between two or more
activities without requiring that data to be protected using exclusive blocks:

Function Argument Types Result Type Description

CAS(x,y,z) x,y,z: same T T compare-and-swap

The compare-and-swap procedure compares the value of the variable named in the first
argument with the value of the second argument. If the two values of non-structured type
match, the variable is overwritten with the value of the third argument. The result is equal
to the original value of the variable. The whole operation is executed atomically and never
interrupted by any other activity. If the second and third argument are the same, the whole
operation effectively equals to an atomic read of a shared variable.

12.1.10 Examples

Other atomic operations like test-and-set can be implemented on top of the CAS proce-
dure:

PROCEDURE TAS∗ (VAR value: BOOLEAN): BOOLEAN;
BEGIN RETURN CAS (value, FALSE, TRUE);
END TAS
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12.2 The Module SYSTEM

The (pseudo-)module SYSTEM contains definitions that are necessary to directly refer to
resources particular to a given computer and/or implementation. These include facilities
for accessing devices that are controlled by the computer, and facilities to override the data
type compatibility rules otherwise imposed by the language definition. The functions and
procedures exported by this module should be used with care! It is recommended to restrict
their use to specific low-level modules. Such modules are inherently non-portable and easily
recognized due to the identifier SYSTEM appearing in their import list.

12.2.1 BIT Manipulation

Function Argument Types Result Type Description

BIT(adr,n) adr: ADDRESS;
n: INTEGER

BOOLEAN Returns TRUE if bit n
at adr is set, FALSE
otherwise

12.2.2 SYSTEM Types

Type Description

BYTE Representation of a single byte.

12.2.3 Unsafe Typecasts

Function Argument Types Result Type Description

VAL(T,x) T: Type; x: ANY T Unsafe type cast. Re-
turns x interpreted as
type T with no conver-
sion

12.2.4 Direct Memory Access Functions

Function Argument Types Result Type Description

PUT(adr,x) adr: ADDRESS;
x: Type

Mem[adr] := x where
the size of type x is 8,
16, 32 or 64 bits

PUT8(adr,x) adr: ADDRESS;
x: (UN)SIGNED8

Mem[adr] := x

PUT16(adr,x) adr: ADRESS;
x: (UN)SIGNED16
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Function Argument Types Result Type Description

PUT32(adr,x) adr: ADDRESS;
x: (UN)SIGNED32

PUT64(adr,x) adr: ADDRESS;
x: (UN)SIGNED64

GET(adr,x) adr: ADDRESS;
VAR x: Type

x := Mem[adr] where
the size of type x is 8,
16, 32 or 64 bits

GET8(adr) adr: ADDRESS SIGNED8 RETURN Mem[adr]
GET16(adr) adr: ADDRESS SIGNED16
GET32(adr) adr: ADDRESS SIGNED32
GET64(adr) adr: ADDRESS SIGNED64
MOVE(src, dst,n) dst: ADDRESS;

n: SIZE
Copy ”n” bytes from
address ”src” to ad-
dress ”dst”

12.2.5 Access to Registers

Function Argument Types Result Type Description

GetStackPointer() ADDRESS return value of stack
pointer register

SetStackPointer(x) x: ADDRESS set value of stack
pointer register

GetFramePointer() ADDRESS return value of frame
pointer register

SetFramePointer(x) x: ADDRESS set value of frame
pointer register

SYSTEM.GetActivity ADDRESS return value of activity
pointer register

SYSTEM.SetActivity x: ADDRESS set value of activity
pointer register

12.2.6 Miscellaneous

Function Argument Types Result Type Description

NEW(p,s) p: any pointer,
s: SIZE

allocate a piece of
memory

TYPECODE(T) type T ADDRESS return address of type
descriptor of T

HALT(n) n: Integer Raise a trap with num-
ber n (unrestricted)

MSK(x,y) x: Integer,
y: Integer

Mask bits of y out of x



12 BUILT-IN FUNCTIONS AND SYMBOLS 63

Time ARRAY OF
CHAR

return the time at com-
pilation

Date ARRAY OF
CHAR

return the date at com-
pilation

13 Systems Programming with Oberon

The most often observed problem of systems programmers new to Oberon is the lack of
logical operators on integer numbers. There is no a & b and no a | b. Furthermore, bit-
shifts have to be expressed either using functions such as SHL or SHR or using division.
The following strategies are recommended for newbies in systems programming with
Oberon.

• Use DIV and Multiplication when you want to shift integer numbers.

• Use SHL and SHR. Use an unsigned type when it is important that the sign bit is
not propagated for right-shifts.

• Use MOD for masking lower bits.

• Use set operations when you want to operate on bit masks.

• Use ODD for bit-tests on integers.

• Use SYSTEM.MOVE when you want to copy large areas of memory.

• Use SYSTEM.PUT or SYSTEM.GET to read or write data byte-wise.

• Use POINTER {UNSAFE} TO ... when you want to access memory directly. Values
compatible to type ADDRESS can be assigned to unsafe pointers.

Procedures, types and symbols can be flagged with special properties that influence the
behavior of compiler and linker:

• Use PROCEDURE {PLAIN} X(...) to avoid that procedure X contains a procedure
activation frame. Procedures marked NOPAF cannot provide variables or parame-
ters.

• Use PROCEDURE {OPENING} X(...) to declare that a procedure should be linked
first in an image. An opening procedure is always PLAIN.

• Use PROCEDURE {CLOSING} X(...) to declare that a procedure should be linked
after all module bodies in an image. A closing procedure is always PLAIN.

• Use VAR a {UNTRACED}: POINTER ... in order to declare a pointer that is not
traced by the Garbage Collector.

• Use a {ALIGNED(32)}: ... in order to make sure a symbol a gets aligned in
memory accordingly.
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• Use x EXTERN 100000H ... in order to make sure a symbol x gets pinned in mem-
ory accordingly.

• Use BEGIN {UNCHECKED} ... END in order to emit code without any checks such
as stack-, null-pointer- or index bound checks.

• Use POINTER {UNSAFE} TO RECORD or POINTER {UNSAFE} TO ARRAY to declare a
pointer that is inherently unsafe. An unsafe pointer is assignment compatible with
an address. Clearly, unsafe pointers cannot be type guarded or checked. Unsafe
pointer to open arrays have no length and cannot be passed as normal array.

Finally, you can write entire procedures or portions thereof using assembler.

• Use CODE ... END in order to write inline assembler code

Example:

PROCEDURE {OPENING} KernelBegin;
CODE

MOV bootFlag, EAX
LEA EAX, initRegs
MOV [EAX + 0], ESI
MOV [EAX + 4], EDI

END KernelBegin;

Fig. 13.1: Code that is linked to the front of a kernel image.

14 Compatibility

There are only few cases of type compatibility that have to be checked by the compiler:

1. Assignment Compatibility is used in the following cases

(a) in assignments d := e: The designator d must designate a variable (or field) that
is not read-only and the type of e must be assignment compatible to the type of d

(b) in return statements within procedures: The type of the parameter a in the state-
ment return a must be assignment compatible to the return type of the respective
procedure.

(c) in type guards a(Tf) and type checks a IS Tf: since records Ra and Rf are
assignment compatible if Ra is an extension of Rf, the parameter compatibility of
Ra and Rf equals the extension compatibility in a type guard and type test.

2. Value Parameter Compatibility is used in the following case

(a) in procedure calls P(...,a,...) on value parameters: if P is defined as

PROCEDURE P(..., [CONST] f: Tf, ...)

then the type of the actual parameters a must be value parameter compatible to
the formal (value) parameter Tf.
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Value parameter compatibility is equivalent with assignment compatibility if the formal
type is not an open array.

3. Variable Parameter Compatibility is used in the following case

(a) in procedure calls P(...,a,...) on variable parameters: if P is defined as

PROCEDURE P(...,VAR f: Tf, ...)

then the type of the actual parameter a must be variable parameter compatible to
the formal (variable) parameter Tf.

4. Expression Compatibility is used for binary operators on expressions and needs a special
treatment. For many arithmetic expressions, one of the two operands needs to be
assigment compatible to the other. All other cases are described via the operator table
in Section 10.7.

14.1 Equal Types

Two variables a and b with types Ta and Tb are of equal type if

1. Ta and Tb are both denoted by the same type identifier, or

2. Ta and Tb are declared to be equal in a type declaration of the form Ta = Tb, or

3. a and b appear in the same identifier list in a variable, field, or formal parameter
declaration and are not open arrays, or

4. Ta and Tb are array types with coinciding lengths and same element type,

5. Ta and Tb are pointer types, both safe or both unsafe, with an equal pointer base type,

6. Ta and Tb are port types with the same direction and width

7. Ta and Tb are tensors with an equal element type

8. Ta and Tb are open math arrays with an equal element type

9. Ta and Tb are open math arrays with the same dimension and equal element type

10. Ta and Tb are static math arrays with the same dimensions, the same lengths and an
equal element type

11. Ta and Tb are procedure types with a matching signature

Item 3. means that a and b have the same (potentially anonymous type). Example:
a, b: RECORD a: SIZE END;

14.1.1 Comparison to original Oberon

Array types with the same length and element type were not considered same in the
original Oberon. Port types are for Active Cells. Math array types are also new.
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14.2 Matching Signature

Two procedure types have a matching signature if they both

1. have an equal return type

2. coincide in the following features: calling convention, delegate, no-return, interrupt,
nestedness,

3. have the same number of formal parameters, each of the same kind (VAR, CONST or
value) and with equal type.

14.3 Type Inclusion

Numeric types ”include” (the values of) ”smaller” numeric types according to the following
hierarchy:

FLOAT64 ⊃ FLOAT32

A UNSIGNED64 A SIGNED64 ⊃ UNSIGNED32 A SIGNED32

⊃ UNSIGNED16 A SIGNED16 ⊃ UNSIGNED8 A SIGNED8

We have used A A B to express when there is assignment compatibility for A 3 a← b ∈ B
while there is not really a superset relationship between the A and B.

14.4 Type Extension (Base Type)

Given a type declaration Tb = RECORD (Ta) ... END, Tb is a direct extension of Ta, and
Ta is a direct base type of Tb. A type Tb is an extension of a type Ta (Ta is a base type of
Tb) if

1. Ta and Tb are equal types, or

2. Tb is a direct extension of an extension of Ta.

If Pa = POINTER TO Ta and Pb = POINTER TO Tb, Pb is an extension of Pa (Pa is a base
type of Pb) if Tb is an extension of Ta.

14.5 Assignment Compatible

An expression l of type Tl is assignment compatible (l := r might be allowed) with a variable
r of type Tr if one of the following conditions hold:

1. Tl and Tr are equal types and no open arrays;

2. Tl and Tr are numeric types and Tl includes Tr;

3. Tl and Tr are record types and Tr is an extension of Tl;
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4. Tl and Tr are pointer types and Tr is an extension of Tl;

5. Tl is a pointer or a procedure type and r is NIL;

6. Tl is ARRAY n OF CHAR, r is a string constant with m characters, and m < n

7. Tl is ARRAY OF CHAR and r is a string constant;

8. Tl and Tr are equal procedure types;

9. Tl is an ADDRESS type and Tr is an unsafe pointer or vice versa

10. Tl and Tr are math array assignment compatible (cf. below).

14.6 Array Compatible

An actual parameter r of type Tr is array compatible with a formal parameter l of type Tl if

1. Tl and Tr are the same type, or

2. Tl is an open array, Tr is any array, and their element types are array compatible, or

3. Tl is ARRAY OF CHAR and r is a string, or

4. Tl is ARRAY OF SYSTEM.BYTE and Tr is any type.

14.7 Math Array Compatible

The base element type of a math array type T is defined recursively as follows: if T is a
math array and its element type E is a math array, then B is the base element type of E,
otherwise E is the base element type of T .

Math array variable compatible An actual parameter r of type Tr is variable-
compatible to a formal parameter l of type Tl if they are both math arrays and the base
element types Bl of Tl and Br or Tr are equal types and Tr is shape-compatible to Tl-

Shape compatible A math array type Tr is shape-compatible to Tl if

1. Tl is a tensor

2. Tl is an open math array and Tr is a an open or static math array with the same
number of dimensions.

3. Tl is a static math array and Tr is a static math array with the same number of
dimensions and the same lenghts.

This definition of shape-compatibility obviously applies to the static properties of a math
array. If a math array with dynamic features (such as variable lengths or dimension) turns
out to be shape-incompatible during runtime, a trap is raised.
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Math array assignment compatible An actual parameter r of type Tr is math array
asignment-compatible to a formal parameter l of type Tl if they are both math arrays and
the base element type Bl of Tl is assignment compatible to the base element type Br of Tr

and either of

1. Tr is shape compatible to Tl or

2. Tl is an open math array and Tr is a tensor

14.8 Parameter Compatible

In a procedure call the actual parameters must be parameter compatible with the formal
parameters. Consider a parameter in a procedure with formal parameter type Tl and a call
P(...,r,...) with actual parameter (expression) r with type Tr. Then the actual parameter r
(an expression with type Tr) is parameter compatible to the formal parameter

1. if, in the case of a value or const parameter,

(a) Tr is assignment compatible to Tl or

(b) Tr is array compatible to Tl

2. if, in the case of a variable parameter, l can be modified, i.e. l has an address and l is
not constant and either of

(a) Tl and Tr are of equal type or

(b) Tr is array compatible to Tl or

(c) Tr is math array variable compatible to Tl.
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A Math Array Types: Usage

Math Arrays are provided as a language extension to Oberon. Math arrays can be treated
just like normal arrays in Active Oberon but they also extend the functionality considerably
by the definition of array-substructures that can be accessed as parameters in procedure calls
and as operands in arithmetic expressions.

Purpose of the math arrays is the possibility of intuitive and efficient mathematical pro-
gramming, in particular in the field of (multi-)linear algebra. By a strict value-semantical
approach the unnatural notion of pointers is consistently avoided.

A.1 Declaration

Math arrays are declared nearly like normal arrays in Active Oberon. The distinction is
realized by additional square brackets in the array type. There are four different ways to
declare a math array.

1. Static arrays are declared with a fixed number of dimensions and with constant
lengths in the form array [n1,n2,n3] OF BaseType where n1, n2 and n3 must be
constant.

2. Dynamic arrays are declared with a fixed number of dimensions and with open length
field in the form ARRAY [∗,∗] of BaseType

3. Tensor arrays are declared with an open number of dimensions and with variable
lengths in the form ARRAY [?] of BaseType. The number of dimensions is determined
at runtime, for example in the allocation statement NEW(a,1,2,3,4) (4 dimensions).

The star ∗ stands for an arbitrary index while the question mark ? stands for an arbitrary
number of arbitrary indices. Therefore ‘ARRAY [∗,∗] OF REAL stands for a dynamic arrays
of dimension two while ARRAY [?] OF FLOAT32 stands for an array with arbitrary number
of dimensions.

Some examples of declaration of enhanced arrays are given in the following figure.

VAR
S1: ARRAY [3,5] OF SIZE;
S2: ARRAY [3] OF ARRAY [5] OF SIZE; (∗ equivalent to S1 ∗)
D1: ARRAY [∗,∗] OF REAL;
D2: ARRAY [∗] OF ARRAY [∗] OF REAL; (∗ equivalent to D1 ∗)
T: ARRAY [?] of INTEGER;

Fig. A.1: Examples of enhanced array declaration
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A.2 Single Element Access

Single element access is denoted just as in Active Oberon by square brackets. Single elements
can be read or written. If an array is read-only or constant, then elements can only be read.

VAR
A: ARRAY [∗,∗] of REAL;
t: REAL; i,j: SIZE;

PROCEDURE p(VAR x: REAL);
BEGIN

(∗ ... ∗)
A[3,5] := t;
t := A[3,5];
P(a[i,j]);

Fig. A.2: Examples of single element access

A.3 Allocation

Dynamic enhanced arrays and arrays with a dynamic dimension have to be allocated before
elements or substructures can be accessed. This can happen expressively with the built-in
NEW-function or implicitly via assignment.

VAR
a,b: ARRAY [∗,∗] of REAL;
t,s: ARRAY [?] of REAL;

begin
...
NEW(a,3,3); (∗ allocation ∗)
NEW(t,3,3); (∗ allocation ∗)
s := a; (∗ implicit allocation ∗)
b := a; (∗ implicit allocation ∗)
s := t; (∗ implicit allocation ∗)
s := a; (∗ implicit allocation, dynamic dimension check ∗)

Fig. A.3: Examples of Allocation of arrays

A.4 Shape

The shape of arrays (geometric information) can be identified by the built-in LEN and
DIMfunction. If an array has not been allocated yet, the built-in functions return values
of zero.
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LEN can be used with two or one parameters. Used with one parameter it returns a vector of
lengths (that is an ARRAY [∗] OF SIZE. With the built-in function INCR the internally used
increments can be read for each dimension.

VAR
a: ARRAY [∗,∗] of FLOAT32;
t: ARRAY [?] of FLOAT32;
d: SIZE;
v: ARRAY [∗] of SIZE;

begin
...
i := LEN(a,d); (∗ number of elements along dimension d ∗)
v := LEN(t); (∗ vector of lengths ∗)
i := INCR(a,0); (∗ increment ∗)
v := INCR(t); (∗ vector of increments ∗)
d := DIM(s); (∗ number of dimensions of s ∗)

Fig. A.4: Examples how to retrieve the shape of arrays

A.5 Assignment and Constant Arrays

There is no notion of pointer to an array for math arrays. Math arrays are provided with
value semantics. By the general determination of value-semantic design for such array types,
assignment always denotes a copy of content (‘deep copy’) rather than a copy of references
(‘shallow copy’). In some cases the deep copy operation may – for optimization purposes – be
a shallow copy, i.e. may be converted to a reference copy by the compiler. Preconditions for
this is that the source operand cannot be reached any more after the assignment statement
and that the destination operand allows overwriting of the descriptor. From an abstract
point of view, however, the basic principle of value transfer persists.

The usage of assignment has already been indicated in Fig. A.3. With the introduction of
value-copies also constant arrays make sense in the language.

A.5.1 Examples

VAR
a: ARRAY [∗,∗] of REAL;
t: ARRAY [?] of REAL;

CONST
c = [[1,2,3],[4,5,6],[7,8,9]];

BEGIN
...



A MATH ARRAY TYPES: USAGE 72

a := c; (∗ assignment of constant array c to a ∗)
t := [[1,2,3],[4,5,6],[7,8,9]]; (∗ assignment ∗)

Fig. A.5: Example of constant arrays and assignment

A.6 Ranges and Slices

Besides that arrays can be accessed element-wise, they can also be accessed in whole portions,
namely in substructures that can be declared with so called ranges. Thereby indexing arrays
with a list of ranges (and integers) results in a designator denoting a (rectangular, regular)
part of the array.

A.6.1 Examples

VAR
a: ARRAY [∗,∗] of REAL;
t,s: ARRAY [?] of REAL;

CONST
c = [[1,2,3],[4,5,6],[7,8,9]];

BEGIN
...
a[1..3,2..4] := c; (∗ shape must match ∗)
t := a[1..2,2..4]; (∗ allocation if necessary ∗)
t[1..2,2..4] := a[1..2,2..4]; (∗ dynamic dimension check ∗)
t[1,∗] := [1,2,3];
s[1,?] := a;

Fig. A.6: Example of ranges and their application

A.7 Parameters, Procedure Calls

Arrays can be used as constant and variable parameter for procedures or methods in Math
Oberon. Variable parameters require that the array might be modified by the callee.

There are certain restrictions and runtime-checks when variables are passed. These will now
be commented on in more detail in the following paragraphs.

Pass by Value. Pass by Value is forbidden for Math Arrays. It has been deliberately
removed from the language and can be replaced without much overhead by assignments.
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Pass by Variable. If there is a VAR modifier in the parameter declaration then the
respective parameter is marked as a reference-parameter. If a parameter is passed by ref-
erence then it is in general not write-protected and can in some cases even be re-allocated.
Modifications of the parameter do have effects on the caller’s variable.

PROCEDURE VPS(VAR S: ARRAY [3,3] of Type)
PROCEDURE VPA(VAR A: ARRAY [∗,∗] of Type)
PROCEDURE VPT(VAR T: ARRAY [?] of Type)

Pass as constant. If there is the const keyword present in the parameter declaration
then the parameter is marked as read-only parameter. It is therefore write protected within
the procedure. This protection is transient, i.e. a write protected variable may not be used
as reference parameter.

PROCEDURE PS(CONST S: ARRAY [3,3] of Type)
PROCEDURE PA(CONST A: ARRAY [∗,∗] of Type)
PROCEDURE PT(CONST T: ARRAY [?] of Type)

Return types. Math arrays can be returned by procedures. Procedures returning en-
hanced arrays can consequently also be passed as value- or constant parameters, but naturally
not as variable parameters.

PROCEDURE P(): ARRAY [∗,∗] of Type;
PROCEDURE P(): ARRAY [3,3] of Type;
PROCEDURE P(): ARRAY [?] of Type;

Fig. A.7: Examples of array return types

A.7.1 Restrictions on the Callee side

By the high grade of interaction between the different array modes (static, dynamic, tensor),
some checks have to be provided by the runtime. In this paragraph we comment on possible
runtime-restrictions for the different possible declarations.

• Pass static array, open array or tensor as constant Array data and descriptor
are immutable. The array is read-only and cannot be re-allocated nor modified in size.

• Pass static array as variable The array can be modified in content only with effect
to the caller’s variable.
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• Pass open array as variable The array can in principle be modified both in content
and size. However the allowance of a re-allocation of A is checked at runtime, since the
passed variable might have been a static array or a range (as in P(B[1..2,1..2])). In
this case a modification in size would not make sense.

• Pass tensor array as variable Array A can be modified both in size and content and
even in the number of dimensions. However the allowance of both, the re-allocation
and a change of dimension, is checked at runtime. The re-allocation and change of
dimension is forbidden, if a static array or a range was passed (as in P(B[1..2,1..2])).
A modification of the number of dimensions is forbidden, if a static or dynamic array
has been passed (as also in P(B) with B: ARRAY [*,*] of Type).

Remark 5 Note that it is in general not guaranteed that the constant array A within the
procedure P is physically identical with the caller’s variable. This is particularly not the
case, if a conversion of parameters has taken place. As an example consider the variable
A: ARRAY [*] of INTEGER and the procedure PROCEDURE P(CONST A: ARRAY [*] of FLOAT32).
As explained in Section ??, it is possible to call P(A) with an automatic conversion of A re-
sulting in a copy of content during the call.

A.7.2 Restrictions on the Callers side

Additional to the possible restrictions within the called procedure (as described in the pre-
vious paragraph) there can also be (runtime-)restrictions on the caller’s side due to the
inter-operability of different array-modes.

Notation 1 Let in the following the variables A, T, S, PA(...), PS(...), PT(...) be defined
as follows:

VAR S: array [a,b] of Type (static array)
VAR A: array [*,*] of Type (open array)
VAR T: array [?] of Type (tensor)
PROCEDURE PS(...): ARRAY [a,b] OF Type (procedure returning static array)
PROCEDURE PA(...): ARRAY [*,*] OF Type (procedure returning open array)
PROCEDURE PT(...): ARRAY [?] OF Type (procedure returning tensor)

Additionally, we use the expression A[a..b,c..d] for any range array substructure being
passed to a procedure. Here A may freely be exchanged by T or S.

Remark 6 Note that the application of a range to an array in general incurs a runtime-
check for the geometry, i.e. the lengths of each dimension. In case of tensors an additional
runtime-check for the number of dimensions is adopted.



A MATH ARRAY TYPES: USAGE 75

Now using the notation from above, the following restrictions apply to the different displayed
cases:

• Pass static array as constant

PROCEDURE P(CONST s: ARRAY [A,B] OF Type;

– the type of s and the caller’s variable have to match exactly. This is only possible
if the types exactly match. Therefore only P(S) and P(PS(...)) is possible. 1

– it is not possible to pass sub-array-structures

• Pass static array as variable

PROCEDURE P(VAR s: ARRAY [A,B] OF Type;

– only allowed: P(S).

– restrictions same as above with the additional restriction that a procedure return-
ing an array cannot be passed.

• Pass open array as constant

PROCEDURE P(CONST s: ARRAY [∗,∗] OF Type);

– allowed: P(A), P(A[a..b,c..d]), P(S), P(PA(...)), P(PS(...))
– if a tensor is passed (P(T), P(PT(...))) then the dimension is checked during

runtime

• Pass open array as variable

PROCEDURE P(VAR s: ARRAY [∗,∗] OF Type);

– allowed: P(A), P(A[a..b,c..d]), P(T), P(S)
– a procedure returning an array cannot be passed

– if a tensor is passed (P(T), P(PT(...))) then the dimension is checked at runtime

• Pass tensor array as constant

PROCEDURE P(CONST s: ARRAY [?] OF Type);

– allowed: P(A), P(A[a..b,c..d]), P(T), P(S), P(PA(...)), P(PT(...)), P(PS(...))

– no restrictions

• Pass tensor array by reference

PROCEDURE P(VAR s: ARRAY [?] OF Type);

– allowed: P(A), P(A[a..b,c..d]), P(T), P(S)

– a procedure returning an array cannot be passed

1The current implementation even rejects the displayed case if a=A and b=B since the types are still distin-
guishable.
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A.7.3 The Return Parameter

If a procedure returns a static array then the actual return value must be of the exact return
type. Some forbidden cases are displayed in the next example.

PROCEDURE P(): ARRAY [5,5] OF Type;
VAR a: ARRAY [∗,∗] OF Type;

b: ARRAY [5,5] OF Type;
BEGIN

NEW(a,5,5);
RETURN a; (∗ forbidden, will not compile ∗)
RETURN a[0..4,0..4]; (∗ forbidden, will not compile ∗)
RETURN b[0..4,0..4]; (∗ forbidden, will not compile ∗)
RETURN b[∗,∗]; (∗ forbidden, will not compile ∗)
RETURN b; (∗ ok ∗)

END P;

Fig. A.8: Examples of a procedure returning static arrays

In procedures returning open arrays any array can be returned if the number of dimensions
and the base types match. If tensors are displayed then the number of dimensions is checked
during runtime. Otherwise the compiler can check it.

PROCEDURE P(): ARRAY [∗,∗] OF Type;
VAR a: ARRAY [∗,∗] OF Type;

t: ARRAY [?] OF Type;
s: ARRAY [3,5] OF Type;

BEGIN
NEW(a,5,5); NEW(t,5,5);
RETURN a; (∗ ok ∗)
RETURN a[∗,∗]; (∗ ok ∗)
RETURN s; (∗ ok ∗)
RETURN s[0..2,0..2]; (∗ ok ∗)
RETURN t; (∗ runtime check for the number of dimensions ∗)
RETURN t[∗,∗]; (∗ runtime check already in the range ∗)

END P;

Fig. A.9: Examples of a procedure returning open arrays

Procedures returning tensors do not incur any restriction to the return values, neither at
compile- nor during runtime.
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A.8 Built-in Operators

A large set of mathematical operators have been defined and implemented for the new en-
hanced array types. In the following code examples, the following types are used: A:array [?] OF Type,
v:array [*] OF integer, s:number, b:boolean

Array 7→ Scalar

s := MIN(A); s := MAX(A); s := SUM(A);

Array 7→ Array
element-wise operators:

A := −B;
A := ~ B;
A := ABS(B);
A := SIGNED64(B); A := ENTIER(B);

other operator

A := B‘; transposition

Array × Array 7→ Scalar

s := B +∗ C;
b := B = C; b := B < C; b := B <= C;
b := B > C ; b := B >= C; b := B \# C;

Array × Scalar 7→ Array | Scalar × Array 7→ Array

A := B + s; A := s + B; A := B − s; A := s − B;
A := s ∗ B; A := B ∗ s;
A := B / s ; A := s / B;
A := s DIV B; A := B DIV s;
A := s MOD B; A := B MOD s;

Array × Array 7→ Array
element-wise operators:

A := B DIV C; A := B MOD C;
A := B + C; A := A − C;
A := B .∗ C; A := B ./ C;
A := B OR C; A := B & C;
A := B .= C; A := B .< C; A := B .<= C;
A := B .> C; A := B .>= C; A := B .# C;

other operators

A := B ∗ C; matrix / vector product
A := B ∗∗ C; tensor product
A := RESHAPE(B,v); reshape operation
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A.9 Type Compatibilities

Due to the automatic conversions that can be performed during runtime (behind the scenes),
enhanced arrays are subject to different type compatibility rules than traditional arrays. Nat-
urally, elements of arrays are accessed just as ordinary data types and therefore this statement
only applies to expressions containing (substructures) of arrays (called array designators).
Array designators are used in assignments, as variable or value parameter in procedure call
and (implicitly) for the type compatibility of procedure variables.

A.9.1 Math Array Assignment Compatibility

Arrays and substructures of arrays are assignment compatible if for

dest := src;

the following conditions hold.

1. – either dim(src)=dim(dest): the number of dimensions of dest equals the one of
src

– or dest is permitted to be made dimension compatible by reallocation (i.e. dest

must be a tensor type).

For enhanced arrays this may be checked at compile-time whereas for tensor types this
can in general only be determined during runtime.

2. – either len(src,i)=dim(dest,i) for all i: the shapes of dest and src coincide

– or the shape of dest is permitted to be made compatible to the shape of src by
reallocation.

If source and destination are both static arrays or static substructures then this may
be checked during compile time, otherwise it can only made sure during runtime.

3. The basetypes of dest and src have to be assignment compatible.

A.9.2 Value Parameter Compatibility

Arrays and substructures of arrays are value parameter compatible if for

PROCEDURE P(CONST a: FormalType);

P(A);

the (actual) type of A is assignment compatible to the (formal) type of a in the definition
of P. Thus the expression P(A) is (statically and dynamically) admissible, if the expression
a := A would be admissible in the given context.
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A.9.3 Variable Parameter Compatibility

Arrays and substructures of arrays are variable parameter compatible if for

PROCEDURE P(var f: FormalType);

P(A);

the (actual) type of A and the (formal) type of f are

• either identical

• or it holds that

1. the base type of A and f are identical and

2. for the shapes Shape(a) and Shape(A) of a and A, respectively, it is true that
shape(a) ∈ shape(A). The following different cases have to be distinguished:

(a) the shape of f is static. Then the shape of the type of A has to be static also
and the lengths must coincide.

(b) the shape of f is open but of fixed dimension. Then the shape of the type of
A must be of the same dimension or dynamic.

(c) the shape of f is a tensor. Then the shape of A may be arbitrary.

A.9.4 Procedure Type Compatibility

Two procedures P and Q are procedure type compatible (i.e. for a variable p of a type
identical to that of P it would be allowed to assign p := Q) with respect to enhanced arrays,
if corresponding array parameters a and b of P and Q have the same base types and if they
are identical in shape, i.e. Base(a)=Base(b) and Shape(a)=Shape(b).

A.9.5 Formalization of the array types. Domains and Shapes

Although we do not like over-formalization very much and want to avoid it as much as possible
in favor of examples and intuition, here we think that a formal treatment of array types can
bring us considerably forward with respect to the general understanding of structured types.

As already noted previously, there are two equally important views on an array that have to
be taken into account to understand the matter in full detail. On the one hand, arrays contain
data and therefore a sufficiently large storage for base type values has to be provided by the
system. On the other hand the geometric structure of an array plays the very important
role of structuring the data just as it is the case with records or the like. The significant
difference between arrays and records is that arrays can have a dynamic structure whereas
records / objects are in general statically sized and structured.

With a mathematical formalization we now try to get some insight into the structuring
of arrays. We introduce the notions domain, type-domain, shape and type-shape of arrays.
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Informally speaking, the domain of an array variable is the set of possible indexes that can be
applied to access a single array element. The domain of an array variable is not necessarily
the same as the one of the respective type of the array. This is due to the fact that an
array declaration such as var a: array [*,*] of FLOAT32 leaves open the set of possible
indices, while during runtime the statement new(a,3,3) substantiates the set of admissible
values of i and j within v := a[i,j]. The type-domain of a is the set containing all potential
domains of a. In the given example this is

⋃
i,j∈N Sij with Sij = {1, . . . , i}×{1, . . . , j}. With

i = j = 3 the domain of a is then {1, . . . , 3} × {1, . . . 3}. In the following table we specify
the domain and shape for different types and variables.

Declaration Domains Shapes
M:array n of B D(M) = {{1, . . . , n}} S(M) = {n}
r:M D(r) ∈ D(r) = {1, . . . , n} S(r) = n
M:array [*] of B D(M) =

⋃
n∈N{{1, . . . , n}} S(M) = N

r:M D(r) = {1, . . . , n} for one n S(r) ∈ N
M:array [*,*] of B D(M) =

⋃
n,m∈N{{1, . . . , n} × {1, . . . ,m}} S(M) = N2

r:M D(r) = {{1, . . . , n} × {1, . . . ,m}} for one (n,m) S(r) ∈ N2

M:array [?] of B D(M) =
⋃

d∈N
⋃

k∈Nd Sd(k) S(M) =
⋃

d Nd

r:M D(r) = {1, . . . , k1} × · · · × {1, . . . , kd} for one k, d S(r) ∈ Nd for one d ∈ N

We have used the abbreviation Sd(k) = {1, . . . , k1} × · · · × {1, . . . , kd}.
With this tools we can express the value parameter compatibility of an array a of (actual)
type A with a procedure parameter f with (formal) type F very easily. Consider the following
code

VAR a: A;
PROCEDURE P(f: F);
...
P(a); (∗ is this a valid call ? ∗)

The expression P(a) is valid, if the base types are compatible and if D(a) ∈ D(F ), equiva-
lently if S(a) ∈ S(F ). Since S(a) is not known at compile time, the best that the compiler
can do is check if S(A) ⊆ S(F ). We have implemented this type check with one excep-
tion: in the case of A being a tensor type and F being an open array type, we only check
S(A) ∩ S(F ) 6= ∅ at compile time, the rest is checked during run time.

A.10 Accessibility of return parameters

To give programmers the possibility to optimize code with regards to the allocation of arrays,
the return parameter of a procedure returning an array or tensor can now be accessed like a
reference parameter. It is named RESULT.

PROCEDURE Test(CONST a: ARRAY [?] OF FLOAT32): ARRAY [?] OF FLOAT32;
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BEGIN
if LEN(a)#LEN(RESULT) then

NEW(RESULT,len(a));
end;
return RESULT; (∗ does nothing, prevents copying ∗)

END Test;
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B EBNF of Active Oberon

Module = ’MODULE’ [TemplateParameters] Identifier [’IN’ Identifier] ’;’
{ImportList} DeclarationSequence [Body]

’END’ Identifier ’.’.

TemplateParameters = ’(’ TemplateParameter {’,’ TemplateParameter} ’)’.

TemplateParameter = (’CONST’ | ’TYPE’) Identifier.

ImportList = ’IMPORT’ Import { ’,’ Import } ’;’.

Import = Identifier [’:=’ Identifier] [’(’ ExpressionList ’)’ ] [’IN’ Identifier].

DeclarationSequence = {
’CONST’ [ConstDeclaration] {’;’ [ConstDeclaration]}
|’TYPE’ [TypeDeclaration] {’;’ [TypeDeclaration]}
|’VAR’ [VariableDeclaration] {’;’ [VariableDeclaration]}
| ProcedureDeclaration
| OperatorDeclaration
| ’;’
}

ConstantDeclaration = [IdentifierDefinition ’=’ ConstantExpression].

ConstantExpression = Expression.

VariableDeclaration = VariableNameList ’:’ Type.

VariableNameList = VariableName {"," VariableName}.

VariableName = IdentifierDefinition [Flags]
[’:=’ Expression | ’EXTERN’ String].

Flags = ’{’ [ Flag {’,’ Flag} ] ’}’.

Flag = Identifier [’(’ Expression ’)’ | ’=’ Expression].

ProcedureDeclaration = ’PROCEDURE’ [’^’|’&’|’~’|’−’|Flags [’−’]]
[’(’ ParameterDeclaration ’)’]
IdentifierDefinition [FormalParameters] ’;’
DeclarationSequence [Body]

’END’ Identifier.
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OperatorDeclaration = ’OPERATOR’ [Flags] [’−’] String [’∗’|’−’] FormalParameters ’;’
DeclarationSequence
[Body]

’END’ String.

FormalParameters = ’(’ [ParameterDeclaration {’;’ ParameterDeclaration}] ’)’
[’:’ [Flags] Type].

ParameterDeclaration = [’VAR’|’CONST’] Identifier [Flags] [’=’ Expression]
{’,’ Identifier [Flags] [’=’ Expression]} ’:’ Type.

Body = ’BEGIN’ [Flags] StatementSequence [’FINALLY’ StatementSequence]
| ’CODE’ Code.

TypeDeclaration = IdentifierDefinition ’=’ Type ’;’.

Type = ArrayType | MathArrayType | RecordType | PointerType | ObjectType
| ProcedureType | EnumerationType | QualifiedIdentifier
| CellType | CellnetType | PortType.

ArrayType = ’ARRAY’ [Expression {’,’ Expression}] ’OF’ Type.

MathArrayType = ’ARRAY’ ’[’ MathArraySize {’,’ MathArraySize} ’]’ ’OF’ Type.

MathArraySize = Expression | ’∗’ | ’?’.

RecordType = ’RECORD’ [’(’ QualifiedIdentifier ’)’]
[VariableDeclaration {’;’ VariableDeclaration}]
{ProcedureDeclaration [’;’]| OperatorDeclaration [’;’]}
’END’.

PointerType = ’POINTER’ [Flags] ’TO’ Type.

ProcedureType = ’PROCEDURE’ [Flags] [FormalParameters].

ObjectType = ’OBJECT’
| ’OBJECT’ [Flags] [’(’ QualifiedIdentifier ’)’]

DeclarationSequence
[Body]

’END’ [Identifier].

EnumerationType = ’ENUM’ [’(’QualifiedIdentifier’)’]
IdentifierDefinition [’=’ Expression]
{’,’ IdentifierDefinition [’=’ Expression]}
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’END’.

CellType = (’CELL’ | ’CELLNET’) [Flags] [’(’ PortList ’)’] [’;’] {ImportList}
DeclarationSequence

[Body] ’END’ [Identifier].

PortList = [PortDeclaration {’;’ PortDeclaration}].

PortDeclaration = Identifier [Flags] {’,’ Identifier [Flags]}’:’ PortType.

PortType = ’PORT’ (’IN’|’OUT’) [’(’ Expression ’)’]

QualifiedIdentifier = Identifier [’.’ Identifier].

IdentifierDefinition = Identifier [ ’∗’ | ’−’ ].

Statement = [
UnaryExpression

[’:=’ Expression
| ’!’ Expression | ’?’ Expression | ’<<’ Expresssion | ’>>’ Expression
]

| ’IF’ Expression ’THEN’ StatementSequence
{’ELSIF’ Expression ’THEN’ StatementSequence}
[’ELSE’ StatementSequence]
’END’

| ’WITH’ Identifier ’:’ QualifiedIdentifier ’DO’ StatementSequence
{’|’ QualifiedIdentifier ’DO’ StatementSequence}
[ELSE StatementSequence]
’END’

| ’CASE’ Expression ’OF’ [’|’] Case
{’|’ Case}
[’ELSE’ StatementSequence]
’END’

| ’WHILE’ Expression ’DO’
StatementSequence

’END’
| ’REPEAT’

StatementSequence
’UNTIL’ Expression

| ’FOR’ Identifier ’:=’ Expression ’TO’ Expression [’BY’ Expression] ’DO’
StatementSequence

’END’
| ’LOOP’ StatementSequence ’END’
| ’EXIT’
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| ’RETURN’ [Expression]
| ’AWAIT’ Expression
| StatementBlock
| ’CODE’ {any} ’END’
| ’IGNORE’ Expression

].

Case = RangeExpression {’,’ RangeExpression} ’:’ StatementSequence.

StatementBlock = ’BEGIN’ [Flags] StatementSequence ’END’.

StatementSequence = Statement {’;’ Statement}.

Expression = RangeExpression [RelationOp RangeExpression].

RelationOp = ’=’ | ’#’ | ’<’ | ’<=’ | ’>’ | ’>=’ | ’IN’ | ’IS’
| ’.=’ | ’.#’ | ’.<’ | ’.<=’ | ’.>’ ’.>=’
| ’??’ | ’!!’ | ’<<?’ | ’>>?’.

RangeExpression = SimpleExpression
| [SimpleExpression] ’..’ [SimpleExpression][’by’ SimpleExpression]
| ’∗’ .

SimpleExpression = Term {AddOp Term}.

AddOp = ’+’ | ’−’ | ’or’.

Term = Factor {MulOp Factor}.

MulOp = ’∗’ | ’/’ | ’DIV’ | ’MOD’ | ’&’
| ’.∗’ | ’./’ | ’\’ | ’∗∗’ | ’+∗’ .

Factor = UnaryExpression | UnaryOperation Factor.

UnaryOperation = ’~’ | ’+’ | ’−’.

UnaryExpression = PrimaryExpression [DesignatorOperations] [Flags].

PrimaryExpression = Number | Character | String | Set | Array
| ’NIL’ | ’IMAG’ | ’TRUE’ | ’FALSE’ |
| ’SELF’ | ’RESULT’ | ’ADDRESS’ | ’SIZE’
| ’SIZE’ ’OF’ Factor | ’ADDRESS’ ’OF’ Factor
| ’ALIAS’ OF Factor
| ’NEW’ QualifiedIdentifier ’(’ ExpressionList ’)’
| ’(’ Expression ’)’
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| Identifier.

DesignatorOperations = { "(" [ExpressionList] ")"
| "." Identifier
| ’[’ IndexList ’]’
| ’^’
| ’‘’

} .

ExpressionList = Expression { ’,’ Expression }.

IndexList = ’?’ [’,’ ExpressionList]
| ExpressionList [’,’ ’?’ [’,’ ExpressionList] ]

Array = ’[’ Expression {’,’ Expression} ’]’.

Set = "{" [RangeExpression {"," RangeExpression}] "}".

String = ’"’ {Character} ’"’ | "’" {Character} "’" | ’\"’ {Character} ’\"’.

Number = Integer | Real.

Integer = Digit {["’"]Digit} | Digit {["’"]HexDigit} ’H’
| ’0x’ {["’"]HexDigit} | ’0b’ {["’"]BinaryDigit}.

Real = Digit {["’"]Digit} ’.’ {Digit} [ScaleFactor].

ScaleFactor = (’E’ | ’D’) [’+’ | ’−’] digit {digit}.

HexDigit = Digit | ’A’ | ’B’ | ’C’ | ’D’ | ’E’ | ’F’
| ’a’ | ’b’ | ’c’ | ’d’ | ’e’ | ’f’ .

Identifier = Letter {Letter | Digit | ’_’ }.

Letter = ’A’ | ’B’ | .. |’Z’ | ’a’ | ’b’ | .. | ’z’ .

Digit = ’0’ | ’1’ | ’2’ | ’3’ | ’4’ | ’5’ | ’6’ | ’7’ | ’8’ | ’9’.
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